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This paper introduces the rationale, explains the functioning, and describes the process of
developing ‘Equidistant Probability’, a NetLogo microworld that models stochastic behavior. In
particular, we detail the phases in attempting to choose suitable parameters and create such
graph displays as will permit an observer to witness the incremental growth of a bell-shaped
curve. We argue that the process of building the model, and in particular the accountability,
motivation, and frustration experienced, were conducive to ‘connected learning’ (Wilensky,
1993), through which the design of this microworld is grounded. The microworld is part of
“ProbLab,” a suite of Probability-and-Statistics models, which in turn is part of
“Understanding Complexity,” a middle-school curriculum, currently in development.

1 Introduction

Equidistant Probability1 (EP) is a microworld written in NetLogo (Wilensky,
1999)—a multi-agent parallel-processing modeling environment—as part of an effort
of the CCL (Center for Connected Learning and Computer-Based Modeling,
http://ccl.northwestern.edu) to create software packages that support middle-school
students’ learning of probability and statistics. The microworld and associated
activities are intended to draw on students’ domain-relevant personal experience and
intuitions (see also Wilensky’s, e.g., 1997, Connected Probability). The design of the
EP microworld was done primarily by the first author (DA) guided by the second
author’s work on “Connected Probability” and inspired by Papert’s call for increased
attention to stochastics (Papert, 1996). The design was informed by a search for an
environment that could pithily convey stochastic behavior as well as the workings of
tools for calculation and display that describe statistical aspects of this behavior. We
wished to create in this environment a suite of models, employing a single interface,
that would address issues of probability from multiple directions. The result was
‘Equidistant Probability’, a complex suite of three sub-models: ‘Equidistant’
(probabilistic), ‘Epicenter’ (“semi-probabilistic”) and ‘Circumference’ (geometrical-
deterministic). In the spirit of constructionism (see Papert, 1980, 1991; Harel &
Papert, 1991), this paper focuses mainly on DA’s own learning through building
‘Equidistant’ and specifically on his attempts to run the model so that it would
display a specific graph, the Gaussian bell-shaped or ‘normal’ distribution curve.

                                                  
1 EP is available for free download at http://ccl.northwestern.edu
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2 Rationale of Equidistant Probability

The NetLogo interface is a “patchy” world—a matrix of agent-like square
locations—and so lends itself readily to conceptual metaphors drawing from space
and spatiality. Inspired by discussions of this theme (Noss & Hoyles, 1996; Papert
1996; Wilensky 1996), the EP design started with the attempt to make a connection
between geometry—the science of idealized space—and probability. The thinking
began as follows: From a given patch in the Cartesian patch-matrix (the center of the
circle in Figure 1) a ‘turtle’—the Logo agent-creature—“sprouts2” at a random
orientation and advances in discrete steps each equal in size to one patch unit. What
is the chance that this walking turtle will land on each of its adjacent patches, e.g., on
the patch directly to its right, as compared to the patch diagonally above it?

Figure 1: Geometric determination of the probabilities
that a creature sprouting from the middle of a patch,
heading in a random orientation, and stepping 1 unit
forward will land on each of the 8 neighboring patches.
The circle is the collection of all points 1 unit away from
the source point and its radii trace steps of length 1 unit.
Note the equilateral triangles (600, 600, 600). The
probabilities of turtles landing in a patch are computed as
the ratio between each inferred central angle subtending
an arc contained within a neighboring patch and 3600, i.e.
60/360=1/6 and 30/360=1/12.

(4 * 1/6) + (4 * 1/12)=1.00

The thematic problem posed by the EP microworld becomes more geometrically
familiar—relating to vertices of polygons—when one adds a second turtle that
sprouts from a different patch and advances according to the same set of rules. Given
that these two turtles sprout simultaneously from their respective patches, and march
contemporaneously in their discrete steps, what are the chances that the turtles will
land at the same time on the same patch? Note that when they do land on such a
patch, then seeing as they sprouted and marched simultaneously in equally sized
steps, it follows that the said patch they have now landed on (green patch, in Figure 2,
below) is equally distant from their respective source (red) patches (the green patch’s
midpoint is the center of a new circle on the perimeter of which lie the centers of the
source red patches; the distances each turtle has marched from its respective red patch
into the green patch are radii in this circle).

                                                  
2 “Sprout” is a primitive command in the NetLogo language. We ask a specific patch to sprout a turtle, and a
turtle pops out of the center of that patch. Likewise, we can ask a plurality of patches to sprout
simultaneously. We use ‘sprout’ both in the transitive (patch sprouting turtle) and reflexive (turtle sprouting
itself) sense of the verb.
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Figure 2: Fragment from the
interface of Equidistant Probability
showing the thematic visual
metaphor: From each of the (3)
selected red patches (the “vertices”)
an arrow-shaped pink “creature”
sprouts at a random orientation and
darts forward. Creatures sprout
simultaneously and advance in
discrete steps. If all (3) creatures
meet at a given patch at the same
moment, then that (green) patch is
equidistant from the (3) source
patches. The patch label (e.g.,
0.22%) indicates the empirical
cumulative frequency of the
creatures’

repeated rendezvous at that patch. This frequency will converge stochastically to the
geometrically determined expected value of 0.23% (1/6 * 1/6 * 1/12).

Whereas two source patches can have many equally distanced patches as
rendezvous points for their turtles, after many attempts it becomes apparent that the
turtles tend to co-visit some of these patches more than they do other patches. Also,
more importantly for this paper, three turtles, too, could find a rendezvous patch, and
their co-visiting of other patches would be rarer. For some configurations of four (and
more) source patches that do have an equidistant point there will be only a single
such equidistant rendezvous patch.

Seeing as the turtles sprout as “blind mice,” oblivious of each other as they are to
the science of statistics, on the sweeping majority of attempts, when all turtles sprout
and head off at random directions, they will not co-visit the same patch. But then
again, sometimes they will. The questions around which EP revolves and which its
prospective users ultimately address is, ‘How often, if ever, will the turtles meet on
the equidistant point?’ and ‘How, if at all, is the turtles’ chance of meeting each other
contingent upon their number and upon their relative positions?’

What the naïve user does not initially know but soon discovers is that the
“successful attempts”—when all the active turtles rendezvous on a single patch—are
not equally dispersed across all attempts, just as a ‘5’ does not recur at a rigid
schedule across numerous rolls of a die. More analogously, perhaps, one should
speak of the distributed co-occurrence of three or four 5’s when rolling as many dice.

The EP environment allows one to address fundamental questions of probability,
such as ‘What does it actually mean, in practice (situated in Time), that an occurrence
has a chance of, say, 1/1296 (1/64)?’ Does the probability of an event reflect an
individual observer’s confidence level that it will occur as the next outcome, or does
it tell us something about frequencies and limiting values (Hacking, 2001)? How are

R
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frequencies to be thought of and used—as mathematical or empirical (Biehler, 1995)?
Why is it that co-occurrences are rarer than individual occurrences? How does
geometrical determinism play against the slowly converging data coming from the
scampering turtles? We suggest that these dichotomous epistemological and
phenomenological aspects of probability—belief vs. frequency, mathematical vs.
empirical, single vs. compound, and deductive vs. inductive—are addressed, pitted,
and connected through the EP design.

The EP microworld is a laboratory that can scaffold and inform students’ habits of
research. Moving back and forth between sub-models, one can use paper-and-pencil
and virtual geometry to pre-determine aspects of posed problems before one runs the
model to test hypotheses, then account for disconfirming evidence that illuminates
back onto one’s understanding of geometry (e.g., if one had surmised an 1/8
probability of a creature landing in each of its 8 neighboring patches, one would then
need to account for the variation). Perhaps, most importantly, as Papert (1996) and
many others have noted, the model’s computer environment affords multiple
opportunities for running through and processing the outcomes of a variety of
thousands of attempts within a single lesson period (compare that to the vicissitudes
of rolling dice). Using the display affordances of NetLogo, one can watch how
histograms that reflect the distribution of successful attempts across all attempts grow
and take form, such as the proverbial bell-shaped curve. But would they indeed take
that form? DA’s personal learning through building EP was guided by a quest to
watch a bell curve—reflecting ‘normal’ distribution—coalesce before his eager eyes.

DA’s learning can be described as an effort to reconcile conflicts between his
‘psycho-statistics’ (Abrahamson & Wilensky, 2003a)—stochastic behavior patterns
as interpreted by human perception, intuition, and experience—and formal
mathematics (see also Gigerenzer, 1998; Biehler, 1995). In particular, these conflicts
accounted for difficulty in modeling the mathematical phenomenon of the bell curve
within the EP environment. The rationale and relevance of the following description
is that mathematics education, and in particular modeling environments, must take
such human biases into account, if we are to create tools for students to negotiate and
connect mathematics to their personal experience (see Wilensky, 1997; also
Abrahamson & Wilensky, 2003b, on S.A.M.P.L.E.R., Statistics As Multi-Participant
Learning-Environment Resource):

3 The Quest

In his attempt to connect the bell-curve representation to the EP stochastics
experiment, DA’s initial instinct was to create code that would typify and
discriminate two distinct classes of events that he was observing in the experiment
outcomes: (1) ‘Failure,’ when the creatures did not meet; and (2) ‘success’ (when the
creatures did meet). Next, he was faced with the task of parsing the succession of
experiment outcomes so as to create data sets that would then be represented as a



Thematic Group 5 EUROPEAN RESEARCH IN MATHEMATICS EDUCATION III

D. Abrahamson, U. Wilensky 5

distribution—a distribution which, he assumed, would take the form of a bell-curve.
But the question was which type of parsing would lead to the bell-curve distribution?

Let us assume that the string of outcomes in a particular experiment was as
follows, with ‘f’ standing for ‘failure’ and ‘s’ standing for ‘success’:

ffsffffsfsfssffsffffffsfsffsssfsffsfsffs
What should one make of such a string? Bamberger (1991) speaks of students’

spontaneous graphic representations of sound sequences as modeling and thus
revealing the students’ idiosyncratic parsing of the string of auditory stimuli.
Likewise, different parsings of probabilistic events reveal different interpretative
underpinnings of the meaning of probability. It is important to stress that neither of
the following interpretations is “correct” or “incorrect.” They are each valid in their
own way (see also “Prob Graphs Basic,” part of the CCL “ProbLab” suite of models).

1. “f f s f f f f s f s f s s f f s f f f f f f s f s f f s s s f s f f s f s f f s.” Taken as a string
of 40 independent events, one can sum up the number of successes (15) and
compute the probability of a success as the ratio between successes and total
outcomes, i.e. 15/40=.375. If the string were long enough, we could argue for the
successes-per-events ratio as being the limiting value of this phenomenon. Note
that such a perspective entirely ignores the distribution of s’s over the string and
any variability that could possibly be observed in this distribution.

2. “ffsff ffsfs fssff sffff ffsfs ffsss fsffs fsffs.” Taking a statistical perspective, one
may parse the string into sub-strings of length 5 events each. Now we can
compute the probability of a success occurring in an individual sample:

875.1
8

15
8

22321221
==

+++++++  successes per Sample of length 5 events, or .375

probability of success per single event. Alternatively, first computing
probabilities, one ends up with the same value: 375.

8
0.3

8
4.4.6.4.2.4.4.2.

==
+++++++ .

3. “ffs ffffs fs fs s ffs ffffffs fs ffs s s fs ffs fs ffs.” In a random string with a total of n
attempts there is an unknown number of sub-strings, each with a length of 1
through n and ending with a success. This interpretative parsing of the events
corresponds, perhaps, to an activity in which a success is associated with relief
and momentary discontinuity of the search3). Here, the lengths of the strings are 3,
5, 2, 2, 1, 3, 7, 2, 3, 1, 1, 2, 3, 2, 3. Thus, the average length of an attempts-until-
success sub-string is 6.2

15
40

= . Note that whereas in Interpretation #1 we computed

40

15
 (probability of success per single outcome), here we computed 

15
40  (average

number of attempts until single success). This reciprocity is no coincidence: In all
interpretations, the ‘40’ corresponded to the total number of events and the ‘15’

                                                  
3 See Gigerenzer’s (1998) discussion of putative evolutionary underpinnings of probability.
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corresponds to the total number of successes. However, each interpretation
harbors a different model of the simulated probabilistic phenomenon, leading to
different forms of representation and subsequent statistical inferences.

Interpretation #3 (samples per success) was DA’s intuitive choice for parsing
outcomes of the EP modeled experiment, because as he watched the simulation run in
real time, he interpreted it as the creatures’ successive failed attempts to meet that
were each capped by a single success. He graphed the distributed lengths of these
attempt-until-success substrings, and was surprised that this distribution did not result
in a bell-curved distribution, but rather in a 

x
1 –type curve (Figure 3, on left).

Figure 3: Fragment from Equidistant Probability. Central distribution is not bell curved because
sample (1000 attempts) is too small relative to the frequency (1/432).

Guessing that perhaps instead of attempts-per-success frequencies he should rather
have graphed the probabilities (the reciprocals of the per-success frequencies), he

created a different graph (Figure 3, on right) but this, too, resulted in a 1
x

 type graph

and not in a bell-curve. Only once he revisited his understanding of ‘sample’ did DA
realize he should parse strings of outcomes into sub-strings of equal length, tally the
successes in each, and form a distribution of these tallies (Interpretation #2, above).

But even sampling, DA found, must be sensitive to the rarity of favored events:
His distributions were coming out lopsided rather than bell-curved (Figure 3, center)
because the samples he was taking were too small, e.g., 1000, for events that occur
every 432 attempts, on average. Only once he tweaked the ratio between sample size
and expected frequencies so as to both avoid “floor effects” (ratio is too low, so many
samples have zero successes) and intractability (ratio is too high, so distribution
evolves too slowly), did DA succeed in representing the experiment outcomes in the
form of a bell curve (Figure 4).
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Note that DA’s insight into the minimally sufficient sample-to-frequency ratio was
informed by his understanding of the geometrical-determinism in this model. For
example, he expected the frequency of events to converge on 1/432 because he had
calculated the product of 6, 6, and 12, which were, respectively, the chance of each
individual creature to step into the equidistant patch. These complementary
perspectives on stochastics—geometric and probabilistic—converged in DA’s
process of making sense of the entire EP suite of models through their design.

4 Conclusion

Clearly, working in our microworld will be essentially different from working on
it. A designer’s productive learning-through-designing experience is hardly a
criterion of a microworld’s efficacy as a learning instrument. Nevertheless, we
believe that essential aspects of DA’s learning experience point to a general need in
the Probability-and-Statistics curricula. Therefore, we have designed working in EP
as an exploration that reconstructs the quest of the bell curve or any other quest. The
improved model strives to be sufficiently complex so as to engage students in both
theoretical and empirical probability yet not so complex that they cannot mathematize

Figure 4: Normal distributions (in central graphs) in the Equidistant Probability
model (NetLogo) after close to 3 million attempts (including over 3000
successes) of the three creatures that sprout from source patches to meet at their
equidistant patch. Sample size is set at 100,000 for events that occur, on average,
every 864 attempts ( 12 * 12 * 6 ), or, reciprocally, with a  ~.12% probability (see
cumulative-probability label on green patch).
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and relate these complementary interpretations (see Henry, 2001). Also, studentswill
collaborate in our design and will be able to share and debate their emergent
understandings (Abrahamson, Berland, Unterman, Shapiro, & Wilensky, 2003), once
EP is implemented in several urban middle and high schools as part of CCL’s
Statistics-and-Probability model-based curriculum. Students’ collaboration is
expected to enhance the epistemological dialectic designed into EP, e.g.,
mathematical vs. empirical stochastics, because conversing students may take
different sides as each works on, brings evidence from, and debates from a different
sub-model perspective. Hopefully, such debate will help students reconcile, as a
group and as individuals, complementary phenomenologies of probability.

The specific arena where such ‘complementarity of levels of observation’
(Wilensky & Stroup, 2000) acts out its dialectic is, perhaps, the ambiguous and rival
interpretations we bring to bear while observing the model as it runs. Our
anticipation of the model’s convergence upon a particular statistical value, coming
from the geometrical proof, espoused with our real-time perception of the emergent,
fuzzy reality, captures the statistical moment as both chaotic and specific, thus
affording the user an environment to develop a mature, integrative, and ‘connected’
conceptualization of stochastic behavior.
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