
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

THE EXTENDED USE OF SIMULATION IN EVALUATING REAL-TIME CONTROL
SYSTEMS OF AGVS AND AUTOMATED MATERIAL HANDLING SYSTEMS

Corné Versteegt
Alexander Verbraeck

Systems Engineering Group

Faculty of Technology, Policy and Management
Delft University of Technology

P.O. Box 5015
2600GA Delft, THE NETHERLANDS

ABSTRACT

Control systems for logistic and transport systems are
among the most complex control systems in existence.
Currently control systems are only fully tested at the shop
floor after commissioning. This means a lot of costly fail-
ures occur at the startup stages of control systems. The
goal of this paper is to describe the extended role that
simulation can play in evaluating of fully automated logis-
tic systems and their control systems before commission-
ing. We followed a three-step approach in evaluating both
logistic and logistic control systems. A simulated control
system was used to control simulated, emulated, and real
prototypes of logistic resources. Three different simulation
packages have been used; Simple++, AutoMod, Arena.
The control system was implemented in all three simula-
tion packages to control logistic resources at the Connekt
TestSite. The TestSite is a special laboratory for testing
new technologies in logistic automation.

1 CONTROL SYSTEMS

In this paper we use following definition of control (Aken
1978):

‘Control is the use of control actions, or interventions,
by a control system to promote the preferred behavior of a
system-being-controlled.’

A clear distinction is made between control system
and system-being-controlled, as can be seen in Figure 1.
Control actions are the efforts the control system uses to
influence the state of the system-being-controlled. For con-
trol actions the plural form is used to indicate that control
is considered as being a continuous process, rather than a
single action (Aken 1978). The controller promotes the
preferred behavior of the system-being-controlled. This
does not mean that the controller completely determines
the behavior of the system. The control system influences

the system-being-controlled, but the control actions do not
have to be successful.

control
system

information

physical input/output
information

system-
being-

controlled

Figure 1: Control System and System-Being-Controlled

 In this paper the systems-being-controlled are logistic
systems that use highly automated logistic resources, like
Automatic Guided Vehicles, abbreviated to AGV, and
automated material handling systems. The control systems
range from individual control systems to guide single
AGVs to automated managers that control large sets of
AGVs (Verbraeck and Versteegt 2001). Control systems
for logistic and transport systems are among the most
complex control systems that are in existence (Pyle et al.
1993). Such control systems have to control many concur-
rent processes, have to react to input within strict time
windows, have a distributed nature, and have to work with
large sets of heterogeneous data.

In this paper we show an approach that designers of
control systems for highly automated logistic systems can
use to evaluate designed control systems before commis-
sioning.

2 TESTING CONTROL SYSTEMS

At this moment control systems are often only fully tested
after commissioning at the shop floor. Auinger et al. (1999)

Versteegt and Verbraeck

state that it is vital to test control systems before implement-
ing them. They suggest using a combination of reality and
simulation to test control systems. Four possible approaches
to test control systems can be distinguished, based on the
possible combinations between reality and simulation, as can
be seen in Figure 2 (Auinger et al. 1999):

1. The traditional way to test control systems. A

combination of a control system and logistic sys-
tem both in reality. The control system is tested
after commissioning.

2. Soft commissioning. A combination of a control
system in reality and a simulated logistic system.
This step is also called emulation (Schiess 2001,
Mueller 2001).

3. Reality in the loop. A combination of a simulated
control system and a real logistic system.

4. Off-line simulation. A combination of both a
simulated control system and a simulated logistic
system.

1

reality s im ula tion

23 4

contro l system

system -being-
contro lled

contro l system

system -being-
contro lled

Figure 2: Approaches for Testing Control Systems

At this moment control systems are mostly only fully
tested after commissioning at the shop floor, combination 1
in Figure 2. It is difficult to test or pre-commission a con-
trol system before implementing and coupling control sys-
tems with the real system-being-controlled. The testing
takes place during the startup phase of the system-being-
controlled. This is an expensive, risky and error-prone way
of developing control systems.

Within communities of simulation and control systems
emulation has been developed as a new improved way of
testing control systems (Mueller 2001). Within emulation
the real control system is connected to a simulation model
that imitates the machines or production systems (Schiess
2001). Emulation can reduce the developing time of con-
trol systems and thus shorten the time-to-market. Emula-
tion allows testing of control systems faster than real-time
and under safe conditions. The conditions under which the
tests are carried out can be better controlled. This allows us
to study different scenarios with which the control system
has to deal. The effects of worst-case scenarios, and ma-
chine break-downs can easily studied by simulating them.
Finally, emulation can be used to train process operators in
an easy and safe environment.

Although emulation and the combinations that
Auinger et al. (2001) offer can be very useful for testing
different kinds of control systems, in our research we need
a extended approach. In this paper we advocate a new ap-
proach of evaluating control systems for highly automated
logistic systems. We applied this approach to test control
systems and automated logistics resources for the Under-
ground Logistic System Schiphol, abbreviated to OLS
Schiphol. The OLS Schiphol is a highly automated under-
ground logistic system that will transport cargo between
Amsterdam Airport Schiphol, logistics centers at Schiphol,
the Flower Auction Aalsmeer, and a future Rail Terminal
near Schiphol. The OLS Schiphol will use up to 400
Automated Guided Vehicles (AGVs) and 40 automated
material handling systems (Verbraeck and Versteegt 2001).
Both the control system and system-being-controlled for
the OLS Schiphol do not yet exist. Furthermore, there is
little experience available for controlling large-scale fully
automated underground logistic systems (Versteegt et al.
2001). So there are still a lot of technological uncertainties
that have to be solved. Working with only a simulation
model of the logistic resources is not enough. Simulation
will provide us detailed information on the behavior of the
logistic resources, but technical aspects cannot be studied.

Our approach uses the methods that were developed
for emulation (Schiess 2001, Mueller 2001) and by
Auinger at al. (1999) as starting points. The approach con-
sists of four phases:

1. Testing in a fully simulated environment or off-

line simulation. In the first phase simulation
models are constructed of both control system and
logistic system. This phase is the same as the off-
line simulation, combination 4 in Figure 2.

2. Emulation of logistic resources. In this phase we
use highly detailed simulation models of the logis-
tic resources and control systems. Although these
models are still simulation models, they much
more closely represent the real physical systems.
The emulation models that were developed of
AGVs contain the real software that will be used
in real AGVs.

3. Combining reality in the loop, emulation, and
simulation. In this phase we combine the simula-
tion models that were developed in phase one and
the emulation models that were developed in the
second phase. Furthermore, we use prototypes and
scale models of the logistic resources. All are con-

Versteegt and Verbraeck

trolled by a simulated control system. This can be
seen as using the combinations 3 and 4 in Figure 2
simultaneously. We use scale models and proto-
types since the real logistic system is not yet
available.

4. Implementation of both control and system-
being-controlled in reality. In this phase the real
control system and system-being-controlled are
implemented in reality.

The main idea behind our approach is the development of
interchangeable simulated, emulated and prototype com-
ponents of the control systems and the systems-being-
controlled. Interchangeable means that components can be
changed during experiments without making changes to
the control systems. This can be seen as ‘plug-and-play’ of
hardware in Windows, see Figure 3. There are three con-
trol layers and one layer that contains the simulated, emu-
lated and real prototypes of the logistic resources.

Order Management

/Resource Management

/ /Dock
Control

AGV
Control

A
G

V

A
G

V

A
G

V

A
G

V

A
G

V

A
G

V

D
o

ck

D
o

ck

D
o

ck

si
m

ul
a

te
d

re
al

si
m

ul
a

te
d

si
m

ul
a

te
d

si
m

ul
a

te
d

re
al

re
al

Figure 3: Interchangeable Components

 The strategy in our four-step approach is to solve as
many of the technical uncertainties at the first stages and
delaying the investments in expensive control software and
physical logistic resources to later stages. In a fully simu-
lated environment problems can easily and quickly be de-
tected and possible solution can be evaluated for their ef-
fectiveness. In later phases the high investments in control
software are made, only when the uncertainties and prob-
lems are solved. When the uncertainties are solved in the
beginning of the project, the chances of investing in wrong
technologies is minimized.

3 INTERCHANGEABLE SIMULATION
COMPONENTS

We used simulation packages to model the control sys-
tems. Literature provides us with several criteria that can
be used to select simulation software (Law and Kelton
1991). In our research we used such criteria and two extra
case dependent criteria (Verbraeck and Versteegt 2001):

• Complex control structures. The simulation pack-

age should allow the modeler to model compli-
cated control structures. This makes it possible to
implement complex logistic rules and control al-
gorithms. Packages that offer a programming lan-
guage interface have a clear advantage over more
graphical oriented packages.

• Open architecture. The simulation package should
have an open architecture. It should be easy to co-
operate and communicate with other software
packages and real systems. The package should be
able to deal with both standard communication pro-
tocols and user-defined communication protocols.
Types of interfaces that can be used are for instance
DDE (Dynamic Data Exchange), DLL (Dynamic
Link Library), TCP/IP socket connections,
ActiveX, OPC (OLE for Process Control), DCOM
(Distributed Components Object Model). When
needed the user should also be able to construct
custom made interfaces.

Based on these criteria we selected three simulation pack-
ages; Simple++ version 6.0 (Verbraeck and Versteegt
2000, Aesop 1999), Arena version 4.0 RT (Kelton,
Sadowski and Sadowski 1998, Verbraeck et al. 2000), and
AutoMod version 9.1 (Verbraeck et al. 2001, Banks 2000).
We chose to implement the control system in three differ-
ent simulation packages. We wanted to show that our ap-
proach and concepts for control are independent of any
software platform. Furthermore, we wanted to gain de-
tailed insight in the different possibilities simulation pack-
ages offer for real-time control and emulation.

The project started with the translation of control sys-
tem into the simulation package. In Figure 4 our approach

Versteegt and Verbraeck

CO RBA wrapper

sim ulated
resources

em ulated
resources

prototype
resources

com m andcom m and

com m andevent

com m and

DLL

event

com
m and

Arena 40. RT

AutoMod 9.1

sim ulation m odel
S im ple++ 6.0

CO RBA

event event

event

S im ulation
m odel

Figure 4: Approach for Testing Logistic Control

is sketched (Verbraeck et al. 2001). The simulation models
of the control systems are located on the top. The simula-
tion and emulation models and prototypes are located at
the bottom.
 The first phase the logistic control system is used to
control simulated logistic resources. In the second phase
the control systems is used to control emulated logistic re-
sources. In the third phase the simulated logistic control is
used to control physical prototypes of the logistic re-
sources. In the end the three different models of the logistic
resources could be tested simultaneously. So one simulated
control systems controls a combined fleet of simulated,
emulated, and prototype AGVs.

To make this possible interchangeable components
were constructed, see Figure 3. The interfaces between the
components were defined right at the beginning of the pro-
ject. Communication between control system and logistic
system were explicitly modeled even in the earliest simula-
tion models (Verbraeck and Versteegt 2001). Later models
and logistic resources had to comply to these interfaces.
This meant that sometimes components had to be
‘wrapped’. The interfaces between the control system and
the systems-being-controlled are identical for all three dif-
ferent types of models of the logistic resources. The simu-
lation model of the control system does not see any differ-
ence between simulated, emulated, and prototypes of the
logistic resources. The control system sends the same
commands and receives the same event messages back.
This approach allows us to change components with-
out any problems. This makes it possible for researchers to
independently work on parts of control and logistic sys-
tems. When components are finished they cooperate with
each other without any problems, since they comply to the
interface. The internal structure of components is a black
box for other components, only the interfaces are known.
All interfaces between the sub-systems were implemented
with CORBA similarly to how they can (or will) be real-
ized in the final system. The same interfaces are used for
the prototypes, emulated models and simulation models.

An important choice to prepare the simulations and the
interfaces of the subsystems for real-world applications
was to work with asynchronous messaging. In reality, de-
lays occur when exchanging information between system
components that are coupled using a network. These delays
can play an important role in the success or failure of the
resulting control system and control strategies. When syn-
chronous communication is used, the effect of a communi-
cation delay might be that the control system blocks until
the information exchange has taken place. This might be
fatal for other actions that have to be coordinated at exactly
the right points in time. Asynchronous communication can
help to reduce this problem. The application thereby does
not make itself dependent on the immediate answer after
sending a message.

Another point to take into consideration when imple-
menting the off-line simulations that have to prepare for
the interfacing to real systems is the single-threaded char-
acter of most simulation languages. All three simulation
packages used are single-threaded. When making a com-
plex calculation, or during the drawing of the animation, it
might be impossible for the simulation language to handle
incoming messages fast enough. The DLLs that were cou-
pled to the simulation and that provide the interfaces to the
outside world, were therefore implemented as multi-
threaded DLLs. Several ‘server threads’ are responsible for
interfacing to the external components of the system. The
DLL buffers the incoming messages, and wait for the
simulation model to import and handle the state changes
that it received. In our case, we implemented the informa-
tion exchange between the simulation model and the DLL
with a polling mechanism that is triggered by an event in
the simulation model. The other possibility, pushing the
information into the simulation model during the run,
turned out to make most simulation environments unstable.
Our approach asked for frequent polling of the DLL infor-
mation from the simulation model. The method to do the
polling is scheduled 10 or 100 times per second.

Finally, the simulation clock synchronization with the
wall clock needs to be taken care of. This is not as trivial as
it seems, and several implementations offered by simula-
tion vendors do not work properly. The usual implementa-
tion of wall clock synchronization is to jump to the next
event on the event list, to check whether the time of this

Versteegt and Verbraeck

event is such that it can be allowed to take place, and if
not, delay the simulation environment until the event is al-
lowed to take place. The problem here is that external
events can come in before the next event time, while the
simulation clock has already been advanced to that next
time. The external events from the real world are not pre-
sent on the event list, and therefore the simulation model
cannot take these into account when advancing the clock.
The event polling mechanism described before, also pro-
vided the solution for proper clock synchronization. The
external events are transferred to the simulation model at
fixed points in time, e.g. 10 or 100 times per second, the
simulation clock cannot advance more than 10 or 100 mil-
liseconds for each event, and the information associated
with these events is transferred with a minimum time delay
into the simulation model.

4 REALITY IN THE LOOP SIMULATIONS

After the first two phases described in section 2, the third
phase of the approach aims at testing the control systems
and control strategies in cooperation real systems. At Delft
University of Technology a special laboratory has been
constructed to evaluate new technologies in logistic auto-
mation and control systems (Verbraeck and Versteegt
2001). This laboratory, called the TestSite, is a special area
of 1600 m2 equipped with scale models (1:3) of logistic re-
sources, AGVs and material handling systems, that will be
used for the OLS Schiphol. Furthermore, prototypes (scale
1:1) of the AGVs and material handling systems are also
available, as can be seen in Figure 5.

Figure 5: TestSite with AGVs and Automated Material
Handling Systems

5 LEARNING POINTS: SYNCHRONIZATION

Synchronization is very important aspect in combing simu-
lation, emulation, and prototypes. Two types of synchroni-
zation are distinguished; time and place. The synchroniza-
tion of time is aimed at synchronizing the simulation clock
of the simulated control system to the internal clocks of the
prototypes and emulated AGVs and material handling sys-
tems. Arena 4.0 RT and Simple++ 6.0 offer standard built-
in features for real-time time progress in simulation mod-
els, that work very well with the polling and synchroniza-
tion method described in section 3. For AutoMod 9.1 we
constructed a ‘wall-clock peeker’. Every fixed time unit,
e.g. every tenth of a second, the wall-clock peeker syn-
chronizes the simulation clock with to the internal clock of
the computer. This was implemented in a user written C++
function in a DLL. In all three implementations the simu-
lated control system had sometime to ‘catch-up’ with the
wall clock. This was especially the case when control algo-
rithms had to be executed for AGVs to safely pass compli-
cated crossings. These are calculation intensive algorithms.
The simulation model then lagged behind the wall clock
and had to catch-up with the wall clock. Two solutions
were implemented to solve this. Firstly, the calculation-
intensive algorithms were transferred from the simulation
models into C++ code. The calculations can be executed
faster in C++ than in simulation software. Secondly, the
asynchronous communication described in section 3 helped
a lot. Within synchronous communication, processes have
to synchronize and react immediately when information is
exchanged. So when one process is not yet ready, the other
process has to wait. A more flexible solution is asynchro-
nous communication (Ben-Ari 1990). In asynchronous
communication a buffer, or queue for messages, is used.
This allows processes to send messages without waiting for
an immediate answer (Verbraeck and Versteegt 2001). A
process sends messages to the mailbox and continues to
operate as normally, without having to wait for the other
process. In most cases, however, the simulation clock had
to be slowed down to synchronize with the real system.

The synchronization of place proved to be more diffi-
cult. The positions and orientations of AGVs in the simula-
tion models have to be synchronized with the actual posi-
tions and orientations of the physical AGVs at the TestSite.
The AGVs have, at this moment, no absolute system to de-
cide their position. The AGVs are equipped with odome-
ters to keep track of their position. For calibration purposes
the AGVs use a magnetic grid in the floor. These are, how-
ever, only relative calibrations. The odometers of the
AGVs prove to work very accurate and are able to keep
track of the actual positions of the AGVs. The AGVs are
free-ranging, their steering is not guided by external con-
trol systems, both mechanical or electronic. Their move-
ments are, however, limited by virtual tracks. The virtual
tracks are given to the AGVs by the simulation model.

To synchronize their positions the AGVs send a so-
called event notification to the simulation model when they
have reached certain positions on a virtual track (Versteegt
and Verbraeck 2001). Four different event notifications can
be used for synchronization of place; on-event, positioned-

Versteegt and Verbraeck

event, passed-event, and near-event, as can be seen in Fig-
ure 6. An on-event is generated when the front of an AGV
has reached the beginning of a new track. The passed event
is the opposite, it is generated when the back of an AGV
has completely left an track. The positioned-event is gen-
erated when the front of an AGV has reached the end of a
track. The near-event is a very special event notification, it
is a position in time/space domain, instead of only being a
physical position. The position of the near-event is equal to
the breaking distance of the AGV towards the end of the
track. The exact time and position of a near-event is there-
fore dependent on the actual speed of the AGV.

braking
distance
braking
distance

Figure 6: On-, Near-, Positioned-, and Passed-Event
(Top-to-Bottom)

When one of the four events has been generated by an

AGV the position and orientation of the physical and simu-
lated AGVs are synchronized.
 The synchronization of place proved to be even more
difficult, because several representations of the AGV exist.
We used five different representations of AGVs (Ver-
braeck et al. 2001). First of all, there are the actual posi-
tions of the prototypes of the AGVs. Secondly, there are
emulated AGVs. The third and fourth representations are
located in the simulation models, there is the logic repre-
sentation and the animation representation. Finally, the
CORBAWrapper has its own representation of the AGVs.
All five ‘different’ AGVs have to be synchronized. Off
course, the synchronization between the representation in
the simulation logic and real prototype was the most vital.
When these two representations differ too much from each
other, crashes between physical AGVs are bound to hap-
pen. The animation was allowed to run ahead or behind
from the other representations.
Another problem were the different start-up sequences
of the simulated control system and emulated and proto-
types systems. The start-up sequence can be seen as the
initial synchronization. Again the initial synchronization in
place proved to be more difficult than the initial synchroni-
zation of time. The simulation model starts empty without
any resources. The real physical systems, however, starts
with AGVs, docks, and loads. These are located at certain
locations and have certain characteristics, e.g. an AGV has
a position, orientation, and a possible load. To solve this
we developed a special initialization protocol and startup
procedure was developed for the TestSite. A web-based
interface to the simulation model was used to enter AGVs
into the simulated control system.

The last problem in synchronization was joining
AGVs to, or removing AGVs from, the simulated control
systems. In normal simulation models AGV are added in
the model and remain there till the simulation experiments
are finished. When controlling real prototype AGVs it is
necessary to remove AGVS from the simulated control
system and add them at a later stage. When large-scale
automated logistic systems are operational they use several
control systems in a distributed setting to control the
AGVs. Each geographical area has its own control sys-
tems. This makes the control system scalable (Verbraeck
and Versteegt 2001). This means however that AGVs will
leave one control systems and enter another control sys-
tem. In our approach we used a web-based interface that
the operator can use to join or remove AGVs and loads.

6 EVALUATION OF SIMULATION PACKAGES

The logistic control was implemented in three different
simulation packages. Only in Simple++ a full implementa-
tion was made. In Arena and AutoMod simplified imple-
mentations were modeled, mainly for testing of the com-
munication protocols.

AutoMod and Simple++ had a clear advantage over
Arena, because of the programming style interfaces. Com-
plex logistic control rules could easily be implemented. All
three simulation packages have an open structure and co-
operation with other software packages and real prototypes
of the logistic resources could easily be made.

Simple++ had one large advantage over AutoMod and
Arena. Simple++ offers possibilities to construct object-
oriented building blocks (Verbraeck and Versteegt 2000).
In Simple++ we started with the construction of a library of
components for both control and logistic system. This
closely fits to the idea of interchangeable components.

AutoMod has a very open structure. The Model Com-
munication Module offers many possibilities for AutoMod
to cooperate with other software modules (Verbraeck et al.
2001). Furthermore, the standard built-in features that
AutoMod offers for logistic control are very powerful.

Versteegt and Verbraeck

The major disadvantage of all three simulation pack-
ages is that control system and system-being-controlled are
strongly interwoven in the simulation languages. Real pro-
gress in real-time control and emulation can only be
achieved when simulation packages implement a clear
separation between control system and system-being-
controlled. In the current versions this separation is not
made, both are strongly interwoven. Clear well-defined in-
terfaces between control systems and systems-being-
controlled should also be provided.

The main advantages that simulation offers are the
safe and fast testing of changes off-line. During the first
experiments the AGVs often created deadlock situations
(Versteegt and Verbraeck 2001). By studying the AGVs
faster than real-time many deadlock situations could be
quickly identified. The solutions for deadlocks could be
safely be tested in a fully simulated environment. When the
solutions proved to work adequately, they could easily be
transferred to the emulated and prototype components.

7 CONCLUSIONS AND FUTURE RESEARCH

The extended use of simulation offered a number of advan-
tages. The main advantages of out approach are based on
the flexibility simulation offers. Changes in both control
system and system-being-controlled could firstly be evalu-
ated in a fully simulation environment. Here we could
speed-up the time and study the effects of changes is a save
environment. When the changes proved to work to well,
they could easily be transferred to the real physical sys-
tems, because the interfaces are the same for both simula-
tion and real systems.

The changeable components allowed us to test different
aspect of the control system and logistic system in combined
experiments, i.e. mechanical engineers could study the be-
havior of the physical scale models of AGV, while logistic
expert could use simulated AGVs to evaluate control strate-
gies. Changes between real components and simulated or
emulated components were every easy to implement because
of the clear interfaces that were defined.

The simulated control system proved to be able to work
as a control system for the real-time control of physical lo-
gistic resources. A number of important questions still have
to be answered. The first question is the scalability of the
simulated control systems. At this moment we are able to
control 10 AGVs and two material handling systems with
our simulated control system. When the OLS Schiphol will
implemented it will use up to 400 AGVs and 40 material
handling systems. Can we still control such a large number
of logistic resources with the simulated control systems, and
still be able to meet the strict time-constrains.

Other experiments will focus on disturbances. It is
very important that the simulated control systems are able
to deal with disturbances. The simulated control system
them has to detect disturbances and decide on a strategy to
solve the identified disturbances. Within simulation models
disturbances can easily be modeled. The simulation model
simple ‘turns off’ a resource for some time. In controlling
real prototypes the disturbances are, however, not initiated
in the simulation models. Disturbances occur in reality, the
simulated control system has to detect the disturbances,
rather than initiating them. In simulation models distur-
bances are ‘automatically’ fixed after a while. In reality an
adequate strategy has to be found to solve the disturbances.

ACKNOWLEDGMENTS

The authors would like to thank Henk Sol, Yvo Saanen,
and Edwin Valentin of the Systems Engineering. Valuable
contributions were given to us by: Jerry Banks, Ian
McGregor, Joop Evers, Ben-Jaap Pielage, Gerrit-Jan
Kleute, and Ruben van Miert. Furthermore, we acknowl-
edge both financial and managerial support of Connekt for
the TestSite.

REFERENCES

AESOP. 1999. SiMPLE++ Reference Manual version 6.0,
Aesop Corporation, Stuttgart, Germany.

Aken, J.E. van. 1978. On the control of complex industrial
organizations, doctoral dissertation, Martinus Nijhoff
Social Sciences Division, Leiden.

Auinger, F., M. Vorderwinkler, and G. Buchtela. 1999. In-
terface driven domain-independent modelling architec-
ture for “soft-commissioning” and “reality in the
loop”, 1999 Winter Simulation Conference, IEEE.

Banks, J. 2000. Getting started with AutoMod, AutoSimu-
lation, Bountiful, Utah.

Ben-Ari, M. 1990. Principles of Concurrent and Distrib-
uted Programming, Prentice Hall.

Kelton, W.D., R.P. Sadowski, and D.A. Sadowski. 1998.
Simulation with Arena, McGraw-Hill.

Law, A.M. and W.D. Kelton. 1991. Simulation modeling
and analysis, McGraw-Hill, New York.

Mueller, G. 2001. Using emulation to reduce commission-
ing costs on a high speed bottling line, 2001 Winter
Simulation Conference, IEEE.

Pyle, I., P. Hruschka, and M. Lissandre. 1993. Real-time
systems; investigating industrial practice, John Wiley.

Schiess, C. 2001. Emulation: debug it in the lab-not on the
floor, 2001 Winter Simulation Conference, IEEE.

Verbraeck, A., P.L. Schroeder, and P.P. van Soest. 2000.
Real-time simulation and control of AGVs in Arena;
The design of a model in Arena 4.1 RT which can con-
trol multiple Automated Guided Vehicles on the Con-
nekt Testsite in Delft, Report Faculty of Technology,
Policy and Management, Delft University of Technol-
ogy, Delft.

Verbraeck, A. and C. Versteegt. 2000. A bridge between
the design and implementation of complex transporta-

Versteegt and Verbraeck

tion systems; linking simulation models and physical
models, 12th European Simulation Symposium, pp.
238-243, Hamburg, Germany.

Verbraeck, A. and C. Versteegt. 2001. Logistic for fully
automated large-scale freight transport systems, 2001
IEEE Intelligent Transportation Systems Proceedings,
pp. 774-779, Oakland (CA), USA.

Verbraeck, A., C. Versteegt, and G.J. Kleute. 2001. Real-
time control of real AGVs using AutoMod, Proceed-
ings Brooks Automation European Simulation Sympo-
sium 2001, Gent, Belgium.

Versteegt, C. and A. Verbraeck. 2001. Concepts for
safety control for the concurrent use of infrastructure
in intelligent transport systems using AGVS, 8th
World Congress on Intelligent Transport Systems,
Sydney, Australia.

Versteegt, C., A. Verbraeck, and S. Geerdes. 2001. Simula-
tion as a supporting tool for multidisciplinary design
of underground freight transport systems, in: E. Tani-
guchi, R.G., Thompson (eds.), City Logistics II, The
Second International Conference on City Logistics, p.
83-97, Okinawa, Japan.

AUTHOR BIOGRAPHIES

CORNÉ VERSTEEGT is a researcher in the Systems
Engineering group of the Faculty of Technology, Policy
and Management of Delft University of Technology. He
specializes in logistics and logistic control systems.
Currently, he is finishing this dissertation on controlling
large-scale automated underground logistic systems. The
research described in this paper is part of his dissertation
research. His email and web-address are <cornev@tbm.
tudelft.nl> and <www.tbm.tudelft.nl/web
staf/cornev>.

ALEXANDER VERBRAECK is an associate professor
in the Systems Engineering Group of the Faculty of
Technology, Policy and Management of Delft University
of Technology. He is also a part-time professor at the
University of Maryland. Alexander specializes in discrete
event simulation, both for real-time analysis and control of
complex logistic systems. Email and web-address are
<alexandv@tbm.tudelft.nl> and <www.tbm.
tudelft.nl/webstaf/alexandv>.

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

	01: 1659
	02: 1660
	03: 1661
	04: 1662
	05: 1663
	06: 1664
	07: 1665
	08: 1666

