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ABSTRACT 

Control systems for logistic and transport systems are 
among the most complex control systems in existence. 
Currently control systems are only fully tested at the shop 
floor after commissioning. This means a lot of costly fail-
ures occur at the startup stages of control systems. The 
goal of this paper is to describe the extended role that 
simulation can play in evaluating of fully automated logis-
tic systems and their control systems before commission-
ing. We followed a three-step approach in evaluating both 
logistic and logistic control systems. A simulated control 
system was used to control simulated, emulated, and real 
prototypes of logistic resources. Three different simulation 
packages have been used; Simple++, AutoMod, Arena. 
The control system was implemented in all three simula-
tion packages to control logistic resources at the Connekt 
TestSite. The TestSite is a special laboratory for testing 
new technologies in logistic automation. 

1 CONTROL SYSTEMS 

In this paper we use following definition of control (Aken 
1978): 

‘Control is the use of control actions, or interventions, 
by a control system to promote the preferred behavior of a 
system-being-controlled.’ 

A clear distinction is made between control system 
and system-being-controlled, as can be seen in Figure 1. 
Control actions are the efforts the control system uses to 
influence the state of the system-being-controlled. For con-
trol actions the plural form is used to indicate that control 
is considered as being a continuous process, rather than a 
single action (Aken 1978). The controller promotes the 
preferred behavior of the system-being-controlled. This 
does not mean that the controller completely determines 
the behavior of the system. The control system influences 

 

the system-being-controlled, but the control actions do not 
have to be successful. 
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Figure 1: Control System and System-Being-Controlled 
 

 In this paper the systems-being-controlled are logistic 
systems that use highly automated logistic resources, like 
Automatic Guided Vehicles, abbreviated to AGV, and 
automated material handling systems. The control systems 
range from individual control systems to guide single 
AGVs to automated managers that control large sets of 
AGVs (Verbraeck and Versteegt 2001). Control systems 
for logistic and transport systems are among the most 
complex control systems that are in existence (Pyle et al. 
1993). Such control systems have to control many concur-
rent processes, have to react to input within strict time 
windows, have a distributed nature, and have to work with 
large sets of heterogeneous data. 

In this paper we show an approach that designers of 
control systems for highly automated logistic systems can 
use to evaluate designed control systems before commis-
sioning. 

2 TESTING CONTROL SYSTEMS 

At this moment control systems are often only fully tested 
after commissioning at the shop floor. Auinger et al. (1999) 
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state that it is vital to test control systems before implement-
ing them. They suggest using a combination of reality and 
simulation to test control systems. Four possible approaches 
to test control systems can be distinguished, based on the 
possible combinations between reality and simulation, as can 
be seen in Figure 2 (Auinger et al. 1999): 

 
1. The traditional way to test control systems. A 

combination of a control system and logistic sys-
tem both in reality. The control system is tested 
after commissioning. 

2. Soft commissioning. A combination of a control 
system in reality and a simulated logistic system. 
This step is also called emulation (Schiess 2001, 
Mueller 2001). 

3. Reality in the loop. A combination of a simulated 
control system and a real logistic system. 

4. Off-line simulation. A combination of both a 
simulated control system and a simulated logistic 
system. 
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Figure 2: Approaches for Testing Control Systems 
 

At this moment control systems are mostly only fully 
tested after commissioning at the shop floor, combination 1 
in Figure 2. It is difficult to test or pre-commission a con-
trol system before implementing and coupling control sys-
tems with the real system-being-controlled. The testing 
takes place during the startup phase of the system-being-
controlled. This is an expensive, risky and error-prone way 
of developing control systems. 

Within communities of simulation and control systems 
emulation has been developed as a new improved way of 
testing control systems (Mueller 2001). Within emulation 
the real control system is connected to a simulation model 
that imitates the machines or production systems (Schiess 
2001). Emulation can reduce the developing time of con-
trol systems and thus shorten the time-to-market. Emula-
tion allows testing of control systems faster than real-time 
and under safe conditions. The conditions under which the 
tests are carried out can be better controlled. This allows us 
to study different scenarios with which the control system 
has to deal. The effects of worst-case scenarios, and ma-
chine break-downs can easily studied by simulating them. 
Finally, emulation can be used to train process operators in 
an easy and safe environment. 

Although emulation and the combinations that 
Auinger et al. (2001) offer can be very useful for testing 
different kinds of control systems, in our research we need 
a extended approach. In this paper we advocate a new ap-
proach of evaluating control systems for highly automated 
logistic systems. We applied this approach to test control 
systems and automated logistics resources for the Under-
ground Logistic System Schiphol, abbreviated to OLS 
Schiphol. The OLS Schiphol is a highly automated under-
ground logistic system that will transport cargo between 
Amsterdam Airport Schiphol, logistics centers at Schiphol, 
the Flower Auction Aalsmeer, and a future Rail Terminal 
near Schiphol. The OLS Schiphol will use up to 400 
Automated Guided Vehicles (AGVs) and 40 automated 
material handling systems (Verbraeck and Versteegt 2001). 
Both the control system and system-being-controlled for 
the OLS Schiphol do not yet exist. Furthermore, there is 
little experience available for controlling large-scale fully 
automated underground logistic systems (Versteegt et al. 
2001). So there are still a lot of technological uncertainties 
that have to be solved. Working with only a simulation 
model of the logistic resources is not enough. Simulation 
will provide us detailed information on the behavior of the 
logistic resources, but technical aspects cannot be studied. 

Our approach uses the methods that were developed 
for emulation (Schiess 2001, Mueller 2001) and by 
Auinger at al. (1999) as starting points. The approach con-
sists of four phases: 

 
1. Testing in a fully simulated environment or off-

line simulation. In the first phase simulation 
models are constructed of both control system and 
logistic system. This phase is the same as the off-
line simulation, combination 4 in Figure 2. 

2. Emulation of logistic resources. In this phase we 
use highly detailed simulation models of the logis-
tic resources and control systems. Although these 
models are still simulation models, they much 
more closely represent the real physical systems. 
The emulation models that were developed of 
AGVs contain the real software that will be used 
in real AGVs. 

3. Combining reality in the loop, emulation, and 
simulation. In this phase we combine the simula-
tion models that were developed in phase one and 
the emulation models that were developed in the 
second phase. Furthermore, we use prototypes and 
scale models of the logistic resources. All are con-
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trolled by a simulated control system. This can be 
seen as using the combinations 3 and 4 in Figure 2 
simultaneously. We use scale models and proto-
types since the real logistic system is not yet 
available. 

4. Implementation of both control and system-
being-controlled in reality. In this phase the real 
control system and system-being-controlled are 
implemented in reality. 

 
The main idea behind our approach is the development of 
interchangeable simulated, emulated and prototype com-
ponents of the control systems and the systems-being-
controlled. Interchangeable means that components can be 
changed during experiments without making changes to 
the control systems. This can be seen as ‘plug-and-play’ of 
hardware in Windows, see Figure 3. There are three con-
trol layers and one layer that contains the simulated, emu-
lated and real prototypes of the logistic resources. 
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Figure 3: Interchangeable Components 

 

 The strategy in our four-step approach is to solve as 
many of the technical uncertainties at the first stages and 
delaying the investments in expensive control software and 
physical logistic resources to later stages. In a fully simu-
lated environment problems can easily and quickly be de-
tected and possible solution can be evaluated for their ef-
fectiveness. In later phases the high investments in control 
software are made, only when the uncertainties and prob-
lems are solved. When the uncertainties are solved in the 
beginning of the project, the chances of investing in wrong 
technologies is minimized. 

3 INTERCHANGEABLE SIMULATION 
COMPONENTS 

We used simulation packages to model the control sys-
tems. Literature provides us with several criteria that can 
be used to select simulation software (Law and Kelton 
1991). In our research we used such criteria and two extra 
case dependent criteria (Verbraeck and Versteegt 2001): 

 
• Complex control structures. The simulation pack-

age should allow the modeler to model compli-
cated control structures. This makes it possible to 
implement complex logistic rules and control al-
gorithms. Packages that offer a programming lan-
guage interface have a clear advantage over more 
graphical oriented packages. 

• Open architecture. The simulation package should 
have an open architecture. It should be easy to co-
operate and communicate with other software 
packages and real systems. The package should be 
able to deal with both standard communication pro-
tocols and user-defined communication protocols. 
Types of interfaces that can be used are for instance 
DDE (Dynamic Data Exchange), DLL (Dynamic 
Link Library), TCP/IP socket connections, 
ActiveX, OPC (OLE for Process Control), DCOM 
(Distributed Components Object Model). When 
needed the user should also be able to construct 
custom made interfaces.  

 
Based on these criteria we selected three simulation pack-
ages; Simple++ version 6.0 (Verbraeck and Versteegt 
2000, Aesop 1999), Arena version 4.0 RT (Kelton, 
Sadowski and Sadowski 1998, Verbraeck et al. 2000), and 
AutoMod version 9.1 (Verbraeck et al. 2001, Banks 2000). 
We chose to implement the control system in three differ-
ent simulation packages. We wanted to show that our ap-
proach and concepts for control are independent of any 
software platform. Furthermore, we wanted to gain de-
tailed insight in the different possibilities simulation pack-
ages offer for real-time control and emulation. 

The project started with the translation of control sys-
tem into the simulation package. In Figure 4 our approach
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Figure 4: Approach for Testing Logistic Control 

 
is sketched (Verbraeck et al. 2001). The simulation models 
of the control systems are located on the top. The simula-
tion and emulation models and prototypes are located at 
the bottom. 
 The first phase the logistic control system is used to 
control simulated logistic resources. In the second phase 
the control systems is used to control emulated logistic re-
sources. In the third phase the simulated logistic control is 
used to control physical prototypes of the logistic re-
sources. In the end the three different models of the logistic 
resources could be tested simultaneously. So one simulated 
control systems controls a combined fleet of simulated, 
emulated, and prototype AGVs. 

To make this possible interchangeable components 
were constructed, see Figure 3. The interfaces between the 
components were defined right at the beginning of the pro-
ject. Communication between control system and logistic 
system were explicitly modeled even in the earliest simula-
tion models (Verbraeck and Versteegt 2001). Later models 
and logistic resources had to comply to these interfaces. 
This meant that sometimes components had to be 
‘wrapped’. The interfaces between the control system and 
the systems-being-controlled are identical for all three dif-
ferent types of models of the logistic resources. The simu-
lation model of the control system does not see any differ-
ence between simulated, emulated, and prototypes of the 
logistic resources. The control system sends the same 
commands and receives the same event messages back. 
This approach allows us to change components with-
out any problems. This makes it possible for researchers to 
independently work on parts of control and logistic sys-
tems. When components are finished they cooperate with 
each other without any problems, since they comply to the 
interface. The internal structure of components is a black 
box for other components, only the interfaces are known. 
All interfaces between the sub-systems were implemented 
with CORBA similarly to how they can (or will) be real-
ized in the final system. The same interfaces are used for 
the prototypes, emulated models and simulation models. 

An important choice to prepare the simulations and the 
interfaces of the subsystems for real-world applications 
was to work with asynchronous messaging. In reality, de-
lays occur when exchanging information between system 
components that are coupled using a network. These delays 
can play an important role in the success or failure of the 
resulting control system and control strategies. When syn-
chronous communication is used, the effect of a communi-
cation delay might be that the control system blocks until 
the information exchange has taken place. This might be 
fatal for other actions that have to be coordinated at exactly 
the right points in time. Asynchronous communication can 
help to reduce this problem. The application thereby does 
not make itself dependent on the immediate answer after 
sending a message. 

Another point to take into consideration when imple-
menting the off-line simulations that have to prepare for 
the interfacing to real systems is the single-threaded char-
acter of most simulation languages. All three simulation 
packages used are single-threaded. When making a com-
plex calculation, or during the drawing of the animation, it 
might be impossible for the simulation language to handle 
incoming messages fast enough. The DLLs that were cou-
pled to the simulation and that provide the interfaces to the 
outside world, were therefore implemented as multi-
threaded DLLs. Several ‘server threads’ are responsible for 
interfacing to the external components of the system. The 
DLL buffers the incoming messages, and wait for the 
simulation model to import and handle the state changes 
that it received. In our case, we implemented the informa-
tion exchange between the simulation model and the DLL 
with a polling mechanism that is triggered by an event in 
the simulation model. The other possibility, pushing the 
information into the simulation model during the run, 
turned out to make most simulation environments unstable. 
Our approach asked for frequent polling of the DLL infor-
mation from the simulation model. The method to do the 
polling is scheduled 10 or 100 times per second. 

Finally, the simulation clock synchronization with the 
wall clock needs to be taken care of. This is not as trivial as 
it seems, and several implementations offered by simula-
tion vendors do not work properly. The usual implementa-
tion of wall clock synchronization is to jump to the next 
event on the event list, to check whether the time of this 
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event is such that it can be allowed to take place, and if 
not, delay the simulation environment until the event is al-
lowed to take place. The problem here is that external 
events can come in before the next event time, while the 
simulation clock has already been advanced to that next 
time. The external events from the real world are not pre-
sent on the event list, and therefore the simulation model 
cannot take these into account when advancing the clock. 
The event polling mechanism described before, also pro-
vided the solution for proper clock synchronization. The 
external events are transferred to the simulation model at 
fixed points in time, e.g. 10 or 100 times per second, the 
simulation  clock cannot advance more than 10 or 100 mil-
liseconds for each event, and the information associated 
with these events is transferred with a minimum time delay 
into the simulation model. 

4 REALITY IN THE LOOP SIMULATIONS 

After the first two phases described in section 2, the third 
phase of the approach aims at testing the control systems 
and control strategies in cooperation real systems. At Delft 
University of Technology a special laboratory has been 
constructed to evaluate new technologies in logistic auto-
mation and control systems (Verbraeck and Versteegt 
2001). This laboratory, called the TestSite, is a special area 
of 1600 m2 equipped with scale models (1:3) of logistic re-
sources, AGVs and material handling systems, that will be 
used for the OLS Schiphol. Furthermore, prototypes (scale 
1:1) of the AGVs and material handling systems are also 
available, as can be seen in Figure 5. 
 

 
Figure 5: TestSite with AGVs and Automated Material 
Handling Systems 

5 LEARNING POINTS: SYNCHRONIZATION 

Synchronization is very important aspect in combing simu-
lation, emulation, and prototypes. Two types of synchroni-
zation are distinguished; time and place. The synchroniza-
tion of time is aimed at synchronizing the simulation clock 
of the simulated control system to the internal clocks of the 
prototypes and emulated AGVs and material handling sys-
tems. Arena 4.0 RT and Simple++ 6.0 offer standard built-
in features for real-time time progress in simulation mod-
els, that work very well with the polling and synchroniza-
tion method described in section 3. For AutoMod 9.1 we 
constructed a ‘wall-clock peeker’. Every fixed time unit, 
e.g. every tenth of a second, the wall-clock peeker syn-
chronizes the simulation clock with to the internal clock of 
the computer. This was implemented in a user written C++ 
function in a DLL. In all three implementations the simu-
lated control system had sometime to ‘catch-up’ with the 
wall clock. This was especially the case when control algo-
rithms had to be executed for AGVs to safely pass compli-
cated crossings. These are calculation intensive algorithms. 
The simulation model then lagged behind the wall clock 
and had to catch-up with the wall clock. Two solutions 
were implemented to solve this. Firstly, the calculation-
intensive algorithms were transferred from the simulation 
models into C++ code. The calculations can be executed 
faster in C++ than in simulation software. Secondly, the 
asynchronous communication described in section 3 helped 
a lot. Within synchronous communication, processes have 
to synchronize and react immediately when information is 
exchanged. So when one process is not yet ready, the other 
process has to wait. A more flexible solution is asynchro-
nous communication (Ben-Ari 1990). In asynchronous 
communication a buffer, or queue for messages, is used. 
This allows processes to send messages without waiting for 
an immediate answer (Verbraeck and Versteegt 2001). A 
process sends messages to the mailbox and continues to 
operate as normally, without having to wait for the other 
process. In most cases, however, the simulation clock had 
to be slowed down to synchronize with the real system. 

The synchronization of place proved to be more diffi-
cult. The positions and orientations of AGVs in the simula-
tion models have to be synchronized with the actual posi-
tions and orientations of the physical AGVs at the TestSite. 
The AGVs have, at this moment, no absolute system to de-
cide their position. The AGVs are equipped with odome-
ters to keep track of their position. For calibration purposes 
the AGVs use a magnetic grid in the floor. These are, how-
ever, only relative calibrations. The odometers of the 
AGVs prove to work very accurate and are able to keep 
track of the actual positions of the AGVs. The AGVs are 
free-ranging, their steering is not guided by external con-
trol systems, both mechanical or electronic. Their move-
ments are, however, limited by virtual tracks. The virtual 
tracks are given to the AGVs by the simulation model.  

To synchronize their positions the AGVs send a so-
called event notification to the simulation model when they 
have reached certain positions on a virtual track (Versteegt 
and Verbraeck 2001). Four different event notifications can 
be used for synchronization of place; on-event, positioned-
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event, passed-event, and near-event, as can be seen in Fig-
ure 6. An on-event is generated when the front of an AGV 
has reached the beginning of a new track. The passed event 
is the opposite, it is generated when the back of an AGV 
has completely left an track. The positioned-event is gen-
erated when the front of an AGV has reached the end of a 
track. The near-event is a very special event notification, it 
is a position in time/space domain, instead of only being a 
physical position. The position of the near-event is equal to 
the breaking distance of the AGV towards the end of the 
track. The exact time and position of a near-event is there-
fore dependent on the actual speed of the AGV. 

 

braking
distance
braking
distance

 
Figure 6: On-, Near-, Positioned-, and  Passed-Event 
(Top-to-Bottom) 
 
When one of the four events has been generated by an 

AGV the position and orientation of the physical and simu-
lated AGVs are synchronized.  
 The synchronization of place proved to be even more 
difficult, because several representations of the AGV exist. 
We used five different representations of AGVs (Ver-
braeck et al. 2001). First of all, there are the actual posi-
tions of the prototypes of the AGVs. Secondly, there are 
emulated AGVs. The third and fourth representations are 
located in the simulation models, there is the logic repre-
sentation and the animation representation. Finally, the 
CORBAWrapper has its own representation of the AGVs. 
All five ‘different’ AGVs have to be synchronized. Off 
course, the synchronization between the representation in 
the simulation logic and real prototype was the most vital. 
When these two representations differ too much from each 
other, crashes between physical AGVs are bound to hap-
pen. The animation was allowed to run ahead or behind 
from the other representations. 
Another problem were the different start-up sequences 
of the simulated control system and emulated and proto-
types systems. The start-up sequence can be seen as the 
initial synchronization. Again the initial synchronization in 
place proved to be more difficult than the initial synchroni-
zation of time. The simulation model starts empty without 
any resources. The real physical systems, however, starts 
with AGVs, docks, and loads. These are located at certain 
locations and have certain characteristics, e.g. an AGV has 
a position, orientation, and a possible load. To solve this 
we developed a special initialization protocol and startup 
procedure was developed for the TestSite. A web-based 
interface to the simulation model was used to enter AGVs 
into the simulated control system. 

The last problem in synchronization was joining 
AGVs to, or removing  AGVs from, the simulated control 
systems. In normal simulation models AGV are added in 
the model and remain there till the simulation experiments 
are finished. When controlling real prototype AGVs it is 
necessary to remove AGVS from the simulated control 
system and add them at a later stage. When large-scale 
automated logistic systems are operational they use several 
control systems in a distributed setting to control the 
AGVs. Each geographical area has its own control sys-
tems. This makes the control system scalable (Verbraeck 
and Versteegt 2001). This means however that AGVs will 
leave one control systems and enter another control sys-
tem. In our approach we used a web-based interface that 
the operator can use to join or remove AGVs and loads. 

6 EVALUATION OF SIMULATION PACKAGES 

The logistic control was implemented in three different 
simulation packages. Only in Simple++ a full implementa-
tion was made. In Arena and AutoMod simplified imple-
mentations were modeled, mainly for testing of the com-
munication protocols. 

AutoMod and Simple++ had a clear advantage over 
Arena, because of the programming style interfaces. Com-
plex logistic control rules could easily be implemented. All 
three simulation packages have an open structure and co-
operation with other software packages and real prototypes 
of the logistic resources could easily be made. 

Simple++ had one large advantage over AutoMod and 
Arena. Simple++ offers possibilities to construct object-
oriented building blocks (Verbraeck and Versteegt 2000). 
In Simple++ we started with the construction of a library of 
components for both control and logistic system. This 
closely fits to the idea of interchangeable components. 

AutoMod has a very open structure. The Model Com-
munication Module offers many possibilities for AutoMod 
to cooperate with other software modules (Verbraeck et al. 
2001). Furthermore, the standard built-in features that 
AutoMod offers for logistic control are very powerful. 
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The major disadvantage of all three simulation pack-
ages is that control system and system-being-controlled are 
strongly interwoven in the simulation languages. Real pro-
gress in real-time control and emulation can only be 
achieved when simulation packages implement a clear 
separation between control system and system-being-
controlled. In the current versions this separation is not 
made, both are strongly interwoven. Clear well-defined in-
terfaces between control systems and systems-being-
controlled should also be provided. 

The main advantages that simulation offers are the 
safe and fast testing of changes off-line. During the first 
experiments the AGVs often created deadlock situations 
(Versteegt and Verbraeck 2001). By studying the AGVs 
faster than real-time many deadlock situations could be 
quickly identified. The solutions for deadlocks could be 
safely be tested in a fully simulated environment. When the 
solutions proved to work adequately, they could easily be 
transferred to the emulated and prototype components. 

7 CONCLUSIONS AND FUTURE RESEARCH 

The extended use of simulation offered a number of advan-
tages. The main advantages of out approach are based on 
the flexibility simulation offers. Changes in both control 
system and system-being-controlled could firstly be evalu-
ated in a fully simulation environment. Here we could 
speed-up the time and study the effects of changes is a save 
environment. When the changes proved to work to well, 
they could easily be transferred to the real physical sys-
tems, because the interfaces are the same for both simula-
tion and real systems. 

The changeable components allowed us to test different 
aspect of the control system and logistic system in combined 
experiments, i.e. mechanical engineers could study the be-
havior of the physical scale models of AGV, while logistic 
expert could use simulated AGVs to evaluate control strate-
gies. Changes between real components and simulated or 
emulated components were every easy to implement because 
of the clear interfaces that were defined. 

The simulated control system proved to be able to work 
as a control system for the real-time control of physical lo-
gistic resources. A number of important questions still have 
to be answered. The first question is the scalability of the 
simulated control systems. At this moment we are able to 
control 10 AGVs and two material handling systems with 
our simulated control system. When the OLS Schiphol will 
implemented it will use up to 400 AGVs and 40 material 
handling systems. Can we still control such a large number 
of logistic resources with the simulated control systems, and 
still be able to meet the strict  time-constrains. 

Other experiments will focus on disturbances. It is 
very important that the simulated control systems are able 
to deal with disturbances. The simulated control system 
them has to detect disturbances and decide on a strategy to 
solve the identified disturbances. Within simulation models 
disturbances can easily be modeled. The  simulation model 
simple ‘turns off’ a resource for some time. In controlling 
real prototypes the disturbances are, however, not initiated 
in the simulation models. Disturbances occur in reality, the 
simulated control system has to detect the disturbances, 
rather than initiating them. In simulation models distur-
bances are ‘automatically’ fixed after a while. In reality an 
adequate strategy has to be found to solve the disturbances.  
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