
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

AN MSE-BASED SIMULATION CAPABILITY FOR
STRATEGIC AND TACTICAL LOGISTICS

Charles R. Standridge

Padnos School of Engineering
Grand Valley State University

301 West Fulton
Grand Rapids, MI 49504-6495, U.S.A.

David R. Heltne

Equilon Enterprises LLC
Westhollow Technology Center

P.O. Box 1380
Houston, TX 77251-1380, U.S.A.

ABSTRACT

We have developed and applied modeling, simulation, and
analysis capabilities for addressing strategic and tactical
logistics problems in the chemical industry. These
problems have to do with determining capital equipment
requirements and assessing alternative strategies for
logistics operations. Applications require short turn around
time. While similar in many respects, each application
requires its own tailored solution. The modular simulation
environment approach has been used to manage a set of
software, including a commercial simulation environment,
general purpose software, and application specific tools.
This set of software tools supports quick model
development and delivery of simulation results. Data
organization strategies for voluminous model input data
and simulation results have been defined. Through this
application work, requirements for a more general MSE
implementation have been established.

1 INTRODUCTION

Logistics has to do with the procurement, storage, and
transportation of goods and people (Pritsker, Sigal, and
Hammesfahr 1989). Strategic and tactical logistics has to
do with what and how much transportation equipment,
loading and unloading mechanisms, and storage is needed
to meet logistics objectives. How to use the available
logistics mechanisms effectively is of critical importance.

In an industrial environment, any resolution of these
issues must deal with a number of interacting factors
including:

1. A large number of customers whose demand for

products may vary seasonally over the course of a
year.

2. A large number of products.
3. Finite production capacity that may be shared

between products.
110
4. Finite inventory storage capacity.
5. Finite loading and unloading capacity.
6. Multiple transportation modes (rail, truck, and

marine).
7. Finite capacity yards for storing empty and full

rail cars.

A wide variety of information must be obtained or

developed and carefully studied to engineer an effective
logistics system. This information includes:

1. Shipments to customers, daily and in total.
2. Inventory levels.
3. Utilization of loading and unloading equipment.
4. Time delays in converting orders to shipments.
5. Location of transportation equipment.
6. Utilization of transportation equipment.
7. Fleet size requirements given transit times.

Simulation is an ideal mechanism for constructing

models of complex logistics systems that are characterized
by voluminous input parameter values. Simulation
experiments can generate a large number of detailed results
to meet specific information requirements.

Simulation supports the evolution of models among
similar projects. The input mechanisms and report
generation capabilities developed for one project can be
reused, modified and extended for the next. Models can be
divided into modules or components (Standridge 1986).
New models can be built from the components of previous
models with modification and extension as necessary plus
new components as required.

We describe a modular simulation environment (MSE)
approach for addressing strategic and tactical logistics
problems in an industrial environment with short turn
around time requirements. Capabilities have evolved over
a series of projects. Organization and input of a large
number of input parameter values is supported.
Organization and post simulation processing of a large set
7

Standridge and Heltne

of simulation results is included. An organizational
structure for model components supports their evolution
and reuse. The MSE architecture needed to support these
applications is identified.

2 BACKGROUND

Ideally, the software tools used in performing a simulation
project would be based on the specific requirements of that
project (Standridge and Centeno 1994). The tool set would
contain both simulation specific tools such as model
builders and simulation engines as well as tools with wide
applicability such as word processors, statistical analysis
packages, graphical presentation packages, and
spreadsheets. In addition, software developed specifically
to support a particular project would be employed.

MSE concepts seek to provide the standard by which
such an ad hoc collection of software tools can be used
together. These concepts specify how simulation related
data flows between tools in a general way so that
heterogeneous software can work together. Concepts for
the organization of simulation input data and experiment
results are included (Standridge, et al. 1996).

Standridge (1999) proposes that an MSE
implementation based on an object manager architecture.
Such an architecture provides the capabilities to add and
delete software tools as necessary as well as to control the
flow of data between the software tools. Each software
tool and each data set can be viewed as an object with
certain attributes. The object manager controls the
invocation of the software tools as well as meeting input
data requirements and managing the results of each
operation. A structure for organizing all simulation data is
included.

Simulation has long been used to support various types
of logistics applications. A few sample applications follow.

Auterio (1974) reported the use of simulation as a
means for managers to measure the productive capacity
and effectiveness of the Dover Air Force Base airlift
system.

Sherall et al. (1992) used a simulation model to
estimate the time interval starting when an aircraft begins
its landing and ending when the aircraft begins its turn onto
a runway exit as well as the location on the runway where
the aircraft finishes coasting after landing. This
information, as well as a feasible set of runway exit
locations determined separately, are input to a dynamic
programming model that determines the optimal locations
of runway exits.

Bruzzone and Signorile (1998) discuss a simulation
model of a harbor operation that periodically invokes
optimization models. Two genetic optimization models are
110
invoke every 14 simulated days: one to prioritize the
unloading and loading of ships arriving in the next 14 days
and the second to specify the location of cargo to load on
the ships within the harbor.

Takakuwa and Fujii (1999) discuss a modular method
for modeling transshipment systems that ship multiple
products to multiple customers. In route storage and
further processing are allowed.

Archibald, Karabakal, and Karlsson (1999) discuss the
use of simulation in comparing supply chain alternatives.

3 DATA INPUT ISSUES

AND ORGANIZATION

Simulation models addressing strategic and tactical
logistics issues often require voluminous data input values.
For example, one particular application required about
2000 lines of input values, including embedded comments.
A reliable input procedure having a short implementation
time per project is required.

The input procedure must recognize a modular and
hierarchical relationship among the inputs. This supports
organizing inputs into multiple files.

A collection of one of each of the required input files
defines a simulation scenario or case to be evaluated. Any
particular file may be associated with one or more
scenarios. The input mechanism must support the one-to-
many relationship between input files and cases.

Within an input file, the same set of quantities may be
repeated to describe multiple entities of the same type. For
example, products may be described by monthly demand,
transportation mode used for delivery, and a list of feasible
loading spots.

Given these requirements, input data was processed as
follows. Each case is given an ID consisting of two parts:

1. Project name
2. Case index

For example, the case ID for project Rail and case index
A1 would be RailA1.

A file name is composed of the case ID plus an
identifier of the information in the file. For example, the
product definition file for project Rail and case index A1
would be named RailA1Product.

A generic parser was developed for loading input data
in a specified format, including a hierarchy of input files,
directly into the variables of a particular simulation
language, in our case Visual SLAM (Pritsker and O�Reilly
1999). Real variables (XX), integer variables (LL), and
character variables (*SZ) may be assigned values. General
error checking is performed.
8

Standridge and Heltne
Consider the following example input lines for two
products:

// Product 1
/X
/B1000
1/ID NUMBER: 1;
2/MONTHLY DEMAND: 500;
3/TRANPORTATION MODE: 1;
10..12/LOADING SPOTS: 10, 11, 12;
/S
/B100
1/PRODUCT NAME: P1;
//
// Product 2
/X
/P50
1/ID NUMBER: 2;
2/MONTHLY DEMAND: 400;
3/TRANPORTATION MODE: 2;
10..12/LOADING SPOTS: 20, 21, 0;
/S
/P1
1/PRODUCT NAME: P2;

The format of a data input line is:

Offset value/comment: input value;

Lines that begin with a slash (/) are parser commands.

The character following the slash defines the command.
Two slashes (//) beginning a line indicate a comment.

The parser supports base-offset addressing to facilitate
the repeated input of the same set of values to support
multiple entities of the same type. A line beginning /X tells
the parser to store the following values as real values in the
Visual SLAM variable XX. A line beginning /B defines the
base of the address of the XX variable. The value preceding
the slash on a data input line is the offset. Thus, the ID
NUMBER of product 1 is stored in XX[1001].

A line beginning /S tells the parser to store the
following values as characters referenced via character
pointers stored in the array SZ. Thus, the pointer to the
name of the first product is stored in SZ[101]

A line beginning /Pv tells the parser to add v to the
base of the variable currently receiving input. Thus, the
line P50 that values the line /X adds 50 to the XX variable
base, giving this quantity a value of 1050. The ID
NUMBER of product 2 is stored in XX[1051].

Suppose for project rail a case is described by two
input files, one for products and one for loading spots.
Three input files would be defined for each case. The main
input file for case a1, RailA1, would be as follows.

//Main input file for project Rail
(RailA1.dat)

//Product File
/IRailA1Product.dat

//Loading Spot File
/IRailA1Spot.dat
11

The main input file uses the /I parser command to

input the values contained in all of the other input files.
Our practices is that no input values are given in the main
input file. Thus, the main input file defines a case based on
the particular input files it references.

Each input file is named based on the first case in
which it is used. Each input file may be included by the
main input files associated with any number of cases.

Project specific input checking is coded as an AweSim
user insert that is invoked at the start of each simulation run.

4 SIMULATION RESULTS ORGANIZATION

AND POST-PROCESSING

Simulation results are organized into text files generated
from user written code. We have found that project
specific reporting is necessary. Simulation results must be
organized and reported for effective use by both simulation
analysts and system experts in order to gain the insights
required for understanding logistic operations. Proper
management of model inputs and results associated with
numerous cases is required.

There are two types of files. One type contains
statistical summaries and is written at the end of each
replicate. Summary statistics include minimums, averages,
maximums, and counts.

The other type of file periodically records variable
values. Such log files are written daily, weekly, or monthly.

Files have a standard format as shown in Figure 1.
Note that the name of the case and the main input file used
in simulating the case are included in the results file. This
documents the link between input values and results.
Rows correspond to replicates for files containing
statistical summaries. Result information is recorded in
fixed width columns for each performance measure of
interest. For log files, the first variable value is the
simulation time at which the information was written.

Figure 1: Simulation Result File Format

The name of each file is formed from the case ID and

a descriptor of the file contents. For example, the name of

Report Name
Report Description
Case ID
Main Input File Name

 Replicate VarName1 VarName2 � VarNamen

 1 Value1 Value2 � Valuen
 2
 .
 .
 .
 r

09

Standridge and Heltne
the file containing product shipment summary statistics for
project Rail and case index A1 could be RailA1Shipped.

Typical simulation result files for a strategic and
tactical logistics project would include:

1. A log file of the volume of each product shipped

each day by shipping mode.
2. A log file of the volume of each product shipped

each month by shipping mode.
3. Statistical summary files for the minimum,

average, and maximum volume of product
shipped daily.

4. Statistical summary files for the minimum,
average, and maximum time delay from receipt of
a customer order to shipment.

5. Statistical summary files for the minimum,
average, and maximum inventory of each product.

6. Statistical summary files for the average and
maximum number of loads completed at each
loading spot each day.

7. A summary file of the total volume of each
product shipped from each loading spot.

8. Statistical summary files related to fleet sizing
including the minimum, average, and maximum
number of rail cars, trucks, and barges at each
location and in transit as well as the maximum
number required.

It was difficult to examine and interpret the

voluminous information recorded in the simulation results
files. Results in one file would need to be examined con-
currently with results in other files. Not all of the results
were relevant to answering questions of interest. These
questions often changed over the course of the project.

Thus, a requirement arose to summarize simulation
statistical results in a single file. This was accomplished in
two steps.

First, a generic simulation replication analysis file was
defined for use on all projects. This file has one section for
each simulation statistical summary file. File header
information: report name, report description, case ID, and
main input file name are copied. There is one row for each
variable in the simulation statistical summary file.
Replication analysis is performed. Columns show the
results of the replication analysis: average, standard
deviation, standard error, 95% and 99% confidence
intervals, coefficient of variation and number of replicates.

A standalone program was written to produce the
replication analysis file. Inputs included a list of the
simulation statistical results files of interest. The default
name for a replication analysis file is the case ID
concatenated with �Summary�.

In some projects, a second set of summary files was
required. These files include only the information
specifically relevant to addressing particular project issues.
11

For example, the number of loading spots for each

product may be at issue. A further complication is that
each loading spot could serve more than one product.
Total volume shipped and statistical summaries of daily
shipping activity at each loading spot by product are
relevant. The information is sorted in two ways: by
loading spot and by product.

A standalone program was written to reorganize the
replication analysis information as required. Inputs
included the relevant replication analysis file and case ID.
The program could reference the case input data as needed,
primarily for labeling purposes.

5 MODELING AND COMPONENT MODELS

Because of short turn around requirements, it is necessary
to reuse as much as possible of previously developed
models on each new project. At the same time, each
project must have its own tailored model.

The strategy of component models (Standridge 1986)
was employed. Models were divided into modules
implemented as multiple AweSim networks. Component
models include:

1. Generation of demand for products.
2. Loading products and incrementing inventories.
3. Shipping products and decrementing inventories.
4. Receiving and unloading products at customer

sites.
5. Managing rail yards.
6. Managing liquid inventories in tanks.
7. Managing loading spot schedules.
8. Managing production schedules and campaign

wheels.

New models are constructed by combining,
embellishing, and extending modules developed for
previous models as well as developing new modules.

A standard structure for integrating discrete events
coded in C with the AweSim networks was employed.
This is shown in Figure 2.

The SLAMBASE file contains the following user
written routines that Visual SLAM invokes: INTLC,
EVENT, and OTPUT. INTLC invokes in turn the
prompter that interactively ask the modeler for the case ID
and case descriptor, the parser that loads the input data, and
UserINTLC that performs all of the computations needed
at the beginning of each replicate. UserINTLC invokes a
user written error checking routine, UserCheck, that checks
the data loaded by the parser as well as SetReport that
writes the report file headers. Events needed for model
execution and log file reporting are each written as C
functions and invoked from EVENT. UserOTPUT writes
the statistical summary report files at the end of each
replicate.
10

Standridge and Heltne

The function USERF is used to compute all quantities
and random samples needed in the model, time delays for
example. The function ALLOC is used to determine all
complex resource allocations such as which loading spot
from a list to employ.

6 THE MSE-BASED ARCHITECTURE

The MSE-Based architecture for the simulation
environment that supports the short turn around time
development of simulation models of strategic and tactical
logistics operations is shown in Figure 3.

1111
File types within the environment include:

1. Input files, as discussed in Section 3.
2. Simulation result files, both simulation log files

that periodically record variable values and
statistical summary files written at the end of each
simulation replicate.

3. Replication analysis files that summarize the
statistical summary files, as discussed in section 4.

4. Files reorganizing the replication analysis files as
discussed in section 5.

Figure 2: Standard Structure for AweSim User Inserts

SLAMBASE
project specific header file

UserIntlc UserOTPUT Parser Prompter

UserCheck SetReport

Event1� Eventn

USERF ALLOC

Figure 3: MSE-Based Architecture

Object Manager
 TBD

Input Files

Simulation Result
Log Files

Simulation Result
Statistical Summary Files

Replication Analysis
Files

Project Specific Reorganization
of Summary Files

AweSim

Text Editor

File Compression

Prompter

Parser

Replication Analysis Program

Summary Reorganization Program

Standridge and Heltne
The AweSim simulation environment is employed
along with a commercial text editor and a file compression
program. The text editor is used in the preparation of
simulation inputs and for the examination of simulation
results. The file compression program is applied to all data
files associated with a particular case to facilitate archival
storage and electronic transmission.

Programs for use on all of the strategic and tactical
logistics projects are included in the environment. These
include:

1. A prompter for the case ID and case descriptor

that are include in the simulation result files.
2. A parser for model input data as was discussed in

section 3.
3. A replication analysis program for statistical

summary files to consolidate and to perform
replication analysis on voluminous simulation
results to facilitate examination and
understanding.

In addition, some projects require a reorganized

presentation of the replication analysis results to quickly
and effectively deal with project issues.
 The object manager for the MSE is under
development. Requirements for data organization and
management as well as program management and use have
been revised and extended as a result of the strategic and
tactical logistics application projects.

7 SUMMARY

We have presented an MSE-based modeling and
simulation capability for industrial strategic and tactical
logistics issues. The MSE includes of an organization for
model inputs and simulation results. Commercially
developed programs within the MSE include a simulation
environment, a text editor, and a file compression program.
Other programs have been written specifically to support
strategic and tactical logistics applications. These include
a prompter for case information, a parser for simulation
inputs, and a replication analysis capability for simulation
results. Additional programs are required for some
applications to present simulation results in a manor that
quickly addresses project issues.

REFERENCES

Archibald, G., N. Karabakal, and P. Karlsson. 1999. Supply

chain vs. supply chain: using simulation to compete
beyond the four walls. In Proceedings of the 1999
Winter Simulation Conference, ed., P. A. Farrington,
H. B. Nembhard, D. T. Sturrock, and G. W. Evans,
1207-1214. Institute of Electrical and Electronics
Engineers, Piscataway, NJ.
11

Auterio, V. J. 1974. A Q-GERT simulation model of air

terminal cargo facilities. In Proceedings, Pittsburgh
Modeling and Simulation Conference, 5, 1181-1186.

Bruzzone, A. and R. Signorile. 1998. Simulation and
genetic algorithms for ship planning and shipyard
layout. Simulation, 71(2), 74-83.

Pritsker, A. A. B., C. E. Sigal, and R. D. J. Hammesfahr.
1989. SLAM II network models for decision support.
Englewood Cliffs, NJ: Prentice-Hall.

Pritsker, A. A. B., and J. J. O�Reilly. 1999. Simulation
with Visual SLAM and AweSim, 2nd edition. New
York: Halsted Press.

Sherali, H. D., A. G. Hobeika, A. A. Trani, and B. J. Kim.
1992. An integrated simulation and dynamic
programming approach for determining optimal
runway exit locations. Management Science, 38(7):
1049-1062.

Standridge, C. R. 1999. Modular simulation environments:
an object manager based architecture. In Proceedings
of the 1999 Winter Simulation Conference, ed., P. A.
Farrington, H. B. Nembhard, D. T. Sturrock, and G.
W. Evans, 598-602. Institute of Electrical and
Electronics Engineers, Piscataway, NJ.

Standridge, C. R., 1996, Progress in modular simulation
environments. In Proceedings of the 1996 Winter
Simulation Conference, ed., J. Charnes, D. Morrice, D.
Brunner, and J. Swain, 714-720. Institute of Electrical
and Electronics Engineers, Piscataway, NJ.

Standridge, C. R. and M. A. Centeno. 1994. Concepts for
modular simulation environments. In Proceedings of
the 1994 Winter Simulation Conference, ed., J. D.
Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila,
657-663. Institute of Electrical and Electronics
Engineers, Piscataway, NJ.

Standridge, C. R. 1986. An approach to model composition
from existing modules. In Modeling and Simulation in
the Artificial Intelligence Era, ed., M. S. Elzas, T. I.
Oren and B. P. Zeigler. North-Holland.

Takakuwa, S. and T Fujii. 1999. A practical module-based
simulation model for transshipment-inventory
systems. In Proceedings of the 1999 Winter Simulation
Conference, ed., P. A. Farrington, H. B. Nembhard, D.
T. Sturrock, and G. W. Evans, 1324-1332. Institute of
Electrical and Electronics Engineers, Piscataway, NJ.

AUTHOR BIOGRAPHIES

CHARLES R. STANDRIDGE is an associate professor
in the Padnos School of Engineering at Grand Valley State
University. He has over 25 years of simulation experience
in academia and industry. He has performed many
simulation applications, developed commercial simulation
software, and taught simulation at three universities. His
current research interests are in the development of
modular simulation environments (MSE). He is working
12

Standridge and Heltne

with industry on the application of MSE to strategic and
tactical logistics problems. His simulation teaching
interests are in the use of computer aided teaching studios
for instruction of introductory undergraduate and graduate
courses using a case-based approach. He has a Ph.D. in
Industrial Engineering from Purdue University. His email
address is <standric@gvsu.edu>.

DAVID R. HELTNE is a member of the technical staff in
the Statistics Department, Engineering RD&T Directorate,
Westhollow Technology Center, Equilon Technology. He
works as an internal OR consultant to all the Shell
companies. Prior assignments have emphasized the
optimization and simulation modeling for decision support
and resource allocation. Projects have ranged from rail
systems design to batch plant testing to nonlinear refinery
planning. He joined the Shell companies in 1980. Prior to
this time, he taught in the areas of design optimization,
simulation modeling and operations research in the
Industrial Engineering Program at the University of Iowa.
Dave has a Ph.D. in Chemical Engineering from the
University of Iowa. His email address is <drheltne@
equilon.com>.

1113

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

