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ABSTRACT  
 
We have developed and applied modeling, simulation, and 
analysis capabilities for addressing strategic and tactical 
logistics problems in the chemical industry.  These 
problems have to do with determining capital equipment 
requirements and assessing alternative strategies for 
logistics operations.  Applications require short turn around 
time.  While similar in many respects, each application 
requires its own tailored solution.  The modular simulation 
environment approach has been used to manage a set of 
software, including a commercial simulation environment, 
general purpose software, and application specific tools.  
This set of software tools supports quick model 
development and delivery of simulation results.  Data 
organization strategies for voluminous model input data 
and simulation results have been defined.  Through this 
application work, requirements for a more general MSE 
implementation have been established. 
 
1 INTRODUCTION 
 
Logistics has to do with the procurement, storage, and 
transportation of goods and people (Pritsker, Sigal, and 
Hammesfahr 1989).  Strategic and tactical logistics has to 
do with what and how much transportation equipment, 
loading and unloading mechanisms, and storage is needed 
to meet logistics objectives.  How to use the available 
logistics mechanisms effectively is of critical importance. 

In an industrial environment, any resolution of these 
issues must deal with a number of interacting factors 
including:  

 
1. A large number of customers whose demand for 

products may vary seasonally over the course of a 
year. 

2. A large number of products. 
3. Finite production capacity that may be shared 

between products. 
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4. Finite inventory storage capacity. 
5. Finite loading and unloading capacity. 
6. Multiple transportation modes (rail, truck, and 

marine). 
7. Finite capacity yards for storing empty and full 

rail cars. 
 
A wide variety of information must be obtained or 

developed and carefully studied to engineer an effective 
logistics system.  This information includes:  

 
1. Shipments to customers, daily and in total. 
2. Inventory levels. 
3. Utilization of loading and unloading equipment. 
4. Time delays in converting orders to shipments. 
5. Location of transportation equipment. 
6. Utilization of transportation equipment. 
7. Fleet size requirements given transit times. 
 
Simulation is an ideal mechanism for constructing 

models of complex logistics systems that are characterized 
by voluminous input parameter values.  Simulation 
experiments can generate a large number of detailed results 
to meet specific information requirements.  

Simulation supports the evolution of models among 
similar projects.  The input mechanisms and report 
generation capabilities developed for one project can be 
reused, modified and extended for the next.  Models can be 
divided into modules or components (Standridge 1986).  
New models can be built from the components of previous 
models with modification and extension as necessary plus 
new components as required. 

We describe a modular simulation environment (MSE) 
approach for addressing strategic and tactical logistics 
problems in an industrial environment with short turn 
around time requirements.  Capabilities have evolved over 
a series of projects.  Organization and input of a large 
number of input parameter values is supported.  
Organization and post simulation processing of a large set 
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of simulation results is included.  An organizational 
structure for model components supports their evolution 
and reuse.  The MSE architecture needed to support these 
applications is identified. 

 
2 BACKGROUND 
 
Ideally, the software tools used in performing a simulation 
project would be based on the specific requirements of that 
project (Standridge and Centeno 1994).  The tool set would 
contain both simulation specific tools such as model 
builders and simulation engines as well as tools with wide 
applicability such as word processors, statistical analysis 
packages, graphical presentation packages, and 
spreadsheets.  In addition, software developed specifically 
to support a particular project would be employed. 

MSE concepts seek to provide the standard by which 
such an ad hoc collection of software tools can be used 
together.  These concepts specify how simulation related 
data flows between tools in a general way so that 
heterogeneous software can work together.  Concepts for 
the organization of simulation input data and experiment 
results are included (Standridge, et al. 1996). 

Standridge (1999) proposes that an MSE 
implementation based on an object manager architecture. 
Such an architecture provides the capabilities to add and 
delete software tools as necessary as well as to control the 
flow of data between the software tools.  Each software 
tool and each data set can be viewed as an object with 
certain attributes.  The object manager controls the 
invocation of the software tools as well as meeting input 
data requirements and managing the results of each 
operation.  A structure for organizing all simulation data is 
included. 

Simulation has long been used to support various types 
of logistics applications.  A few sample applications follow. 

Auterio (1974) reported the use of simulation as a 
means for managers to measure the productive capacity 
and effectiveness of the Dover Air Force Base airlift 
system. 

Sherall et al. (1992) used a simulation model to 
estimate the time interval starting when an aircraft begins 
its landing and ending when the aircraft begins its turn onto 
a runway exit as well as the location on the runway where 
the aircraft finishes coasting after landing.  This 
information, as well as a feasible set of runway exit 
locations determined separately, are input to a dynamic 
programming model that determines the optimal locations 
of runway exits. 

Bruzzone and Signorile (1998) discuss a simulation 
model of a harbor operation that periodically invokes  
optimization models.  Two genetic optimization models are  
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invoke every 14 simulated days: one to prioritize the 
unloading and loading of ships arriving in the next 14 days 
and the second to specify the location of cargo to load on 
the ships within the harbor. 

Takakuwa and Fujii (1999) discuss a modular method 
for modeling transshipment systems that ship multiple 
products to multiple customers.  In route storage and 
further processing are allowed. 

Archibald, Karabakal, and Karlsson (1999) discuss the 
use of simulation in comparing supply chain alternatives. 

 
3 DATA INPUT ISSUES  

AND ORGANIZATION 
 
Simulation models addressing strategic and tactical 
logistics issues often require voluminous data input values.  
For example, one particular application required about 
2000 lines of input values, including embedded comments.  
A reliable input procedure having a short implementation 
time per project is required.   

The input procedure must recognize a modular and 
hierarchical relationship among the inputs.  This supports 
organizing inputs into multiple files. 

A collection of one of each of the required input files 
defines a simulation scenario or case to be evaluated.  Any 
particular file may be associated with one or more 
scenarios.  The input mechanism must support the one-to-
many relationship between input files and cases. 

Within an input file, the same set of quantities may be 
repeated to describe multiple entities of the same type.  For 
example, products may be described by monthly demand, 
transportation mode used for delivery, and a list of feasible 
loading spots. 

Given these requirements, input data was processed as 
follows.  Each case is given an ID consisting of two parts: 

 
1. Project name 
2. Case index 

 
For example, the case ID for project Rail and case index 
A1 would be RailA1. 

A file name is composed of the case ID plus an 
identifier of the information in the file.  For example, the 
product definition file for project Rail and case index A1 
would be named RailA1Product. 

A generic parser was developed for loading input data 
in a specified format, including a hierarchy of input files, 
directly into the variables of a particular simulation 
language, in our case Visual SLAM (Pritsker and O�Reilly 
1999).  Real variables (XX), integer variables (LL), and 
character variables (*SZ) may be assigned values.  General 
error checking is performed. 
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Consider the following example input lines for two 
products: 

 
// Product 1 
/X 
/B1000 
1/ID NUMBER: 1; 
2/MONTHLY DEMAND: 500; 
3/TRANPORTATION MODE: 1; 
10..12/LOADING SPOTS: 10, 11, 12; 
/S 
/B100 
1/PRODUCT NAME: P1; 
//  
// Product 2 
/X 
/P50 
1/ID NUMBER: 2; 
2/MONTHLY DEMAND: 400; 
3/TRANPORTATION MODE: 2; 
10..12/LOADING SPOTS: 20, 21, 0; 
/S 
/P1 
1/PRODUCT NAME: P2; 
 
The format of a data input line is: 
 
Offset value/comment: input value; 
 
Lines that begin with a slash (/) are parser commands.  

The character following the slash defines the command.  
Two slashes (//) beginning a line indicate a comment.   

The parser supports base-offset addressing to facilitate 
the repeated input of the same set of values to support 
multiple entities of the same type.  A line beginning /X tells 
the parser to store the following values as real values in the 
Visual SLAM variable XX.  A line beginning /B defines the 
base of the address of the XX variable.  The value preceding 
the slash on a data input line is the offset.  Thus, the ID 
NUMBER of product 1 is stored in XX[1001].   

A line beginning /S tells the parser to store the 
following values as characters referenced via character 
pointers stored in the array SZ.  Thus, the pointer to the 
name of the first product is stored in SZ[101] 

A line beginning /Pv tells the parser to add v to the 
base of the variable currently receiving input.  Thus, the 
line P50 that values the line /X adds 50 to the XX variable 
base, giving this quantity a value of 1050.  The ID 
NUMBER of product 2 is stored in XX[1051]. 

Suppose for project rail a case is described by two 
input files, one for products and one for loading spots.  
Three input files would be defined for each case.  The main 
input file for case a1, RailA1, would be as follows. 

 
//Main input file for project Rail 
(RailA1.dat) 
 
//Product File 
/IRailA1Product.dat 
 
//Loading Spot File 
/IRailA1Spot.dat 
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The main input file uses the /I parser command to 

input the values contained in all of the other input files.  
Our practices is that no input values are given in the main 
input file.  Thus, the main input file defines a case based on 
the particular input files it references. 

Each input file is named based on the first case in 
which it is used.  Each input file may be included by the 
main input files associated with any number of cases. 

Project specific input checking is coded as an AweSim 
user insert that is invoked at the start of each simulation run. 

 
4 SIMULATION RESULTS ORGANIZATION 

AND POST-PROCESSING 
 
Simulation results are organized into text files generated 
from user written code.  We have found that project 
specific reporting is necessary.  Simulation results must be 
organized and reported for effective use by both simulation 
analysts and system experts in order to gain the insights 
required for understanding logistic operations.  Proper 
management of model inputs and results associated with 
numerous cases is required. 

There are two types of files.  One type contains 
statistical summaries and is written at the end of each 
replicate.  Summary statistics include minimums, averages, 
maximums, and counts. 

The other type of file periodically records variable 
values.  Such log files are written daily, weekly, or monthly. 

Files have a standard format as shown in Figure 1.  
Note that the name of the case and the main input file used 
in simulating the case are included in the results file.  This 
documents the link between input values and results.  
Rows correspond to replicates for files containing 
statistical summaries.  Result information is recorded in 
fixed width columns for each performance measure of 
interest.  For log files, the first variable value is the 
simulation time at which the information was written. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1:  Simulation Result File Format 

 
The name of each file is formed from the case ID and 

a descriptor of the file contents.  For example, the name of 

Report Name 
Report Description 
Case ID 
Main Input File Name 
 
 Replicate  VarName1  VarName2    �     VarNamen 
 
               1       Value1        Value2    �           Valuen 
               2 
               . 
               . 
               . 
              r 
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the file containing product shipment summary statistics for 
project Rail and case index A1 could be RailA1Shipped. 

Typical simulation result files for a strategic and 
tactical logistics project would include: 

 
1. A log file of the volume of each product shipped 

each day by shipping mode. 
2. A log file of the volume of each product shipped 

each month by shipping mode. 
3. Statistical summary files for the minimum, 

average, and maximum volume of product 
shipped daily. 

4. Statistical summary files for the minimum, 
average, and maximum time delay from receipt of 
a customer order to shipment. 

5. Statistical summary files for the minimum, 
average, and maximum inventory of each product. 

6. Statistical summary files for the average and 
maximum number of loads completed at each 
loading spot each day. 

7. A summary file of the total volume of each 
product shipped from each loading spot. 

8. Statistical summary files related to fleet sizing 
including the minimum, average, and maximum 
number of rail cars, trucks, and barges at each 
location and in transit as well as the maximum 
number required. 

 
It was difficult to examine and interpret the 

voluminous information recorded in the simulation results 
files.  Results in one file would need to be examined con-
currently with results in other files.  Not all of the results 
were relevant to answering questions of interest.  These 
questions often changed over the course of the project. 

Thus, a requirement arose to summarize simulation 
statistical results in a single file.  This was accomplished in 
two steps.   

First, a generic simulation replication analysis file was 
defined for use on all projects.  This file has one section for 
each simulation statistical summary file.  File header 
information: report name, report description, case ID, and 
main input file name are copied.  There is one row for each 
variable in the simulation statistical summary file.  
Replication analysis is performed.  Columns show the 
results of the replication analysis: average, standard 
deviation, standard error, 95% and 99% confidence 
intervals, coefficient of variation and number of replicates. 

A standalone program was written to produce the 
replication analysis file.  Inputs included a list of the 
simulation statistical results files of interest.  The default 
name for a replication analysis file is the case ID 
concatenated with �Summary�.   

In some projects, a second set of summary files was 
required.  These files include only the information 
specifically relevant to addressing particular project issues.   
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For example, the number of loading spots for each 

product may be at issue.  A further complication is that 
each loading spot could serve more than one product.  
Total volume shipped and statistical summaries of daily 
shipping activity at each loading spot by product are 
relevant.  The information is sorted in two ways: by 
loading spot and by product.   

A standalone program was written to reorganize the 
replication analysis information as required.  Inputs 
included the relevant replication analysis file and case ID.  
The program could reference the case input data as needed, 
primarily for labeling purposes. 

 
5 MODELING AND COMPONENT MODELS 
 
Because of short turn around requirements, it is necessary 
to reuse as much as possible of previously developed 
models on each new project.  At the same time, each 
project must have its own tailored model. 

The strategy of component models (Standridge 1986) 
was employed.  Models were divided into modules 
implemented as multiple AweSim networks.  Component 
models include: 

 
1. Generation of demand for products. 
2. Loading products and incrementing inventories. 
3. Shipping products and decrementing inventories. 
4. Receiving and unloading products at customer 

sites. 
5. Managing rail yards. 
6. Managing liquid inventories in tanks. 
7. Managing loading spot schedules. 
8. Managing production schedules and campaign 

wheels. 
 

New models are constructed by combining, 
embellishing, and extending modules developed for 
previous models as well as developing new modules. 

A standard structure for integrating discrete events 
coded in C with the AweSim networks was employed.  
This is shown in Figure 2.   

The SLAMBASE file contains the following user 
written routines that Visual SLAM invokes: INTLC, 
EVENT, and OTPUT.  INTLC invokes in turn the 
prompter that interactively ask the modeler for the case ID 
and case descriptor, the parser that loads the input data, and 
UserINTLC that performs all of the computations needed 
at the beginning of each replicate.  UserINTLC invokes a 
user written error checking routine, UserCheck, that checks 
the data loaded by the parser as well as SetReport that 
writes the report file headers.  Events needed for model 
execution and log file reporting are each written as C 
functions and invoked from EVENT.  UserOTPUT writes 
the statistical summary report files at the end of each 
replicate. 
10
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The function USERF is used to compute all quantities 
and random samples needed in the model, time delays for 
example.  The function ALLOC is used to determine all 
complex resource allocations such as which loading spot 
from a list to employ. 

 
6 THE MSE-BASED ARCHITECTURE 
 
The MSE-Based architecture for the simulation 
environment that supports the short turn around time 
development of simulation models of strategic and tactical 
logistics operations is shown in Figure 3. 
 
 
 

 
 

 
 

1111
File types within the environment include: 
 
1. Input files, as discussed in Section 3. 
2. Simulation result files, both simulation log files 

that periodically record variable values and 
statistical summary files written at the end of each 
simulation replicate. 

3. Replication analysis files that summarize the 
statistical summary files, as discussed in section 4. 

4. Files reorganizing the replication analysis files as 
discussed in section 5. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Standard Structure for AweSim User Inserts 

SLAMBASE 
project specific header file 

UserIntlc UserOTPUT Parser Prompter 

UserCheck SetReport 

Event1� Eventn 

USERF ALLOC 
 

 

 

 

 

 

 

 
 

Figure 3:  MSE-Based Architecture
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The AweSim simulation environment is employed 
along with a commercial text editor and a file compression 
program.  The text editor is used in the preparation of 
simulation inputs and for the examination of simulation 
results.  The file compression program is applied to all data 
files associated with a particular case to facilitate archival 
storage and electronic transmission. 

Programs for use on all of the strategic and tactical 
logistics projects are included in the environment.  These 
include: 

 
1. A prompter for the case ID and case descriptor 

that are include in the simulation result files. 
2. A parser for model input data as was discussed in 

section 3. 
3. A replication analysis program for statistical 

summary files to consolidate and to perform 
replication analysis on voluminous simulation 
results to facilitate examination and 
understanding. 

 
In addition, some projects require a reorganized 

presentation of the replication analysis results to quickly 
and effectively deal with project issues. 
 The object manager for the MSE is under 
development.  Requirements for data organization and 
management as well as program management and use have 
been revised and extended as a result of the strategic and 
tactical logistics application projects. 

 
7 SUMMARY 
 
We have presented an MSE-based modeling and 
simulation capability for industrial strategic and tactical 
logistics issues.  The MSE includes of an organization for 
model inputs and simulation results.  Commercially 
developed programs within the MSE include a simulation 
environment, a text editor, and a file compression program.  
Other programs have been written specifically to support 
strategic and tactical logistics applications.  These include 
a prompter for case information, a parser for simulation 
inputs, and a replication analysis capability for simulation 
results.  Additional programs are required for some 
applications to present simulation results in a manor that 
quickly addresses project issues. 
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