
Proceedings of the 2000 Winter Simulation Conference 
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds. 

 
 
 

INTEGRATING MODELLING AND DATA ANALYSIS IN 
TEACHING DISCRETE EVENT SIMULATION 

 
 

Krysztof Pawlikowski 
Wolfgang Kreutzer 

 
Department of Computer Science 

University of Canterbury 
Christchurch, NEW ZEALAND 

 
 

 

ABSTRACT  
 
The growing popularity of stochastic discrete event 
simulation in areas such as telecommunication, combined 
with much marketing hype about ease of use, has coaxed 
some practitioners into a misguided belief that choosing 
prefabricated components from libraries and configuring 
them into a model by pointing and clicking is all that is 
needed. While neglect of statistical aspects of simulation 
has already led to some highly problematic published 
results, this erroneous assumption must also be guarded 
against in university teaching. This paper therefore argues 
for the importance of teaching those issues that critically 
affect the analysis and credibility of a simulation�s results 
alongside those methods and tools targeted at the needs of 
model design and construction. 
 
1 INTRODUCTION 
 
Using stochastic discrete event simulation successfully 
requires a valid conceptual model, based on appropriate 
assumptions.  Figure 1 shows the usual steps in a 
simulation modelling project. The first 4 of these phases 
(i.e. system identification, model design, model 
implementation, program verification) have been well 
researched and documented. Many good textbooks exist, 
many commercial tools offer convenient programming 
environments, and the relevant methodologies are often 
taught well. In order to serve its purpose, however, a model 
must also be validated and used in a �valid experiment�, 
which requires the application of suitable sources of 
�randomness� as well as appropriate means of analysing its 
output data. Both issues are of central importance to a 
model�s credibility and need to be motivated and taught 
well. Appropriate motivation can, for example, be provided 
by showing the ease with which inadequate analysis of a 
simulation�s results can lead to erroneous conclusions. 
Such motivation is particularly important if the relevant 
techniques for overcoming these problems are conceived as 
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unglamorous and technically difficult. Appropriate choice 
of convincing examples as well as effective  presentation 
(e.g. by skilful use of visualisation and animation of time 
series data) can be used to overcome this perception.  
 Our own work in this context has centred on teaching 
stochastic simulation of telecommunications networks, but 
we believe that these issues have wider applicability.  
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Figure 1:  A Model of Model Construction 

 
Since any stochastic computer simulation must be regarded 
as a  (simulated) statistical experiment, the application of 
statistical methods of analysis is mandatory. 
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2 THE GENERATION OF  
RANDOM BEHAVIOUR 

 
It is a generally accepted practice to use algorithmic 
generators of pseudo-random uniformly distributed 
numbers (PRNG) to reflect  randomness in stochastic 
simulation. The theoretical foundations of PRNGs are well 
established (see, for example Knuth 1998) and over the last 
50 years many different PRNGs that pass rigorous 
theoretical tests have been proposed.  

Practically all of these are linear congruential PRNGs 
(LC-PRNGs) and  generate periodic sequences of numbers. 
The most popular belong to a class of recursive algorithms 
in integer modulo M arithmetic (Entacher 1998). In today�s 
world of 32-bit computers multiplicative LC-PRNGs with 
modulus 231-1 have received special attention and, 
following exhaustive analysis, about 20 of them can be 
recommended as acceptable sources for modeling pseudo-
randomness  (see Fishman and Moore 1986, L�Ecuyer 
1990, L�Ecuyer 1991, Park 1988). These are the generators 
that have been used, for example, in GPSS (version H and 
PC), SIMSCRIPT II.5, SIMAN and SLAM II  (Law and 
Kelton 1991). As a result one could claim that the search 
for a good PRNG has become unproblematic. 

Unfortunately, this is only partially true. Any 
conscientious users of PRNGs should be aware that they 
may face potentially serious problems when using PRNGs 
in real-life applications. One problem is that recent 
advances in computing technology have made PRNGs with 
cycles in the order of 231 effectively obsolete for all but 
very short simulation runs. Today a standard workstation 
operating at a speed of a few hundred MHZ can generate  
the whole cycle of a mod(231-1) PRNG  in a few minutes. 
And 1 GHz PCs have just been announced  (Lewis 2000). 
When planning a simulation with a runtime of more than a 
few minutes of  CPU time one obviously needs PRNGs of 
much longer cycles than would have been acceptable only 
a few years ago. For example, simulations of modern 
telecommunication networks, fed by traffic streams 
modeled by strongly auto-correlated processes, need very 
long runtimes and long streams of output data in order to 
report results with an acceptably small statistical error. 

The use of PRNGs with adequately long cycles is also 
strongly advocated by recently established theoretical 
restrictions on the number of pseudo-random numbers 
from the same PRNG to be used in a single simulation. For 
example, if one is concerned with two dimensional 
uniformity of pseudo-random numbers, then, in order to 
maintain pseudo-randomness of pairs of numbers 
generated by a PRNG with cycle length L, one should not 
use more than 8 L  numbers from a single PRNG during 
a single simulation (L�Ecuyer 1998, L�Ecuyer 1999b). 
Fortunately, recent advances have led to the discovery of 
generators that should be adequate for simulations 
demanding even very long runtimes  for the foreseeable 
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future. For example, a number of Multiple Recursive LC-
PRNGs, and Combined Multiple Recursive LC-PRNGs, 
with cycles between 2185 and 2377, have been reported by 
L�Ecuyer (1999), together with portable implementations. 
Their pseudo-randomness  has been established as 
satisfactory  in up to 32 dimensions. 

Recently an even more remarkable discovery has been 
reported. Investigations into a class of Generalized 
Feedback Shift Register PRNGs (GFSFR-PRNGs) have 
resulted in the discovery of a twisted GFSFR-PRNG, 
known as the Mersenne Twister, with an extremely long 
cycle of 219937-1 and good pseudo randomness for 32-bit 
accuracy in up to 623 dimensions (Matsumoto and 
Nishimura 1998). Matsumoto and Nishimura�s 1998 paper 
also contains a portable implementation of this generator 
for 32-bit machines, written in C. This is claimed to be 
faster than a standard PRNG used in the ANSI C rand() 
function. <www.math.keio.ac.jp/matumoto/ 
emt.html> offers more  information regarding the 
Mersenne Twister.  

There are therefore  PRNGs of acceptable quality which 
can serve as practical  sources of randomness in stochastic 
simulations, and their use must be taught. Unfortunately this 
does not mean that all problems related with PRNGs have 
been solved. For example, one should be very cautious when 
using uniformly distributed pseudo-random numbers from a 
single generator in distributed and/or parallel simulations. 
The reasons for this lie in potential correlations between 
disjoint sub-streams of consecutive numbers (Entacher 1998, 
Hellekalek 1998). As A. Compagner (1995), of the 
Technical University of Delft (Netherlands) put it : �.. 
results of stochastic simulation are misleading when 
correlations hidden in the random numbers and in the 
simulated system interfere constructively ...�  

Even in the case of traditional, non-distributed and non 
parallel simulation on single processors one must be careful. 
Uncontrolled distribution of various computer programs has 
resulted in the uncontrolled proliferation of PRNGs with 
unsatisfactory or unknown quality. The advice by D. E. 
Knuth (1998) is even more relevant today:  �.. replace the 
random generators by good ones. Try to avoid being 
shocked at what you find ...��. Jain (1991) offers a longer list 
of useful practical guidelines on how to use or not use 
PRNGs in simulation studies; together with the advice that 
�.. it is better to use an established generator that has bee 
ntested thoroughly than to invent a new one��.  

 
3 TEACHING SEQUENTIAL  

STOCHASTIC SIMULATION 
 
Even where good random generators are used for a model�s 
implementation one must continually guard against any 
misleading assumption that simulation has now simply 
become an exercise in computer programming. Successful 
use of quantitative stochastic simulation for quantitative 
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assessment of dynamic system performance requires more 
than just the ability to build useful models. Many respected 
researchers report that modeling of a simulated system  
represents only 30-40% of the total effort in most successful 
simulation projects (Law and Kelton 1991). After a valid 
simulation model has been designed and a corresponding 
program has been implemented and verified a researcher still 
faces the problem of conducting appropriate output analysis. 
While sadly poorly supported by most commercial tools, this 
is another skill that novices must be taught. Stochastic 
simulation should be seen as a (simulated) statistical 
experiment and analysis of its output data is the necessary 
condition for any credible final results. If the random nature 
of such output data is ignored, then �.. instead of an 
expensive simulation model, a toss of the coin had better be 
used� (Kleinjen 1979). As any other paradigm of scientific 
research the results of a simulation experiment should be 
obtained with an appropriately small error.  

Otherwise statistical results can be misleading or 
at the least inconclusive. Figures 2 and 3 clearly shows this 
in case of a model for a Medium Access Protocol of a 
mobile communication network (Fitzek et al. 2000); i.e. 
figure 3 provides a much better insight into the relevant 
system�s performance. 
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Figure 2:  Influence of Statistical Errors on the Quality of 
Simulation  Results - Statistical Errors of 25% or Less 
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Figure 3:  Influence of Statistical Errors on the Quality of 
Simulation  Results - Statistical Errors of 1% or Less 
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Unfortunately the obvious statistical nature of simulation 
output data has been  neglected to such an extend that one can 
justifiably talk of a deep credibility crisis in applied stochastic 
simulation. For example, in the area of telecommunication 
networks, a recent survey of almost 2300 scientific 
publications that appeared in a  selection of prestigious 
journals and conference proceedings between 1992-1998 
reveals that, while over 50% of all surveyed publications  
reported results obtained from simulation studies, only about 
23% of the simulation-based papers could be considered as 
credible sources of information which reported  statistically 
analyzed results (Pawlikowski 1999). 

One reason, but not an excuse, for this alarming state 
of affairs may be that the output generated by a typical 
simulation run can be strongly auto-correlated and the 
analysis of such time series may require sophisticated 
statistical techniques. A possible escape from this situation, 
which can also aid teaching, could employ automated 
analyses; for which, however, suitable tools must be 
developed (see, for example Heidelberger and Welch 1983, 
Pawlikowski 1990).  

Statistical errors in simulation results are commonly 
measured by a confidence interval expected to contain an 
unknown value. The probability of this to happen is known 
as the confidence level. In any correctly implemented 
stochastic simulation the width of this interval will tend to 
shrink with the number of data points we collect. Two 
different scenarios exist. The simpler one enters the length 
of a simulation experiment as an input parameter to the 
model. Although this method is often defended by arguing 
that, for �well behaved� models, the output�s credibility 
should improve the longer we run the model, the 
magnitude of the resulting statistical error is ultimately a 
matter of luck. While it continues to be a popular �default� 
it is no longer an acceptable method to teach: �... no 
procedure in which the run length is fixed before the 
simulation begins can be relied upon to produce a 
confidence interval that covers the theoretical value with 
the desired probability�. (Law and Kelton 1991). 

Instead modern methodology offers sequential 
simulation as an alternative which gives us control over the 
tradeoff between computational effort and the expected 
quality of the data we wish to produce. Here a simulation 
unfolds  through a sequence of consecutive checkpoints at 
which the accuracy of estimates, conveniently measured by 
the relative statistical error, is assessed. The simulation is 
stopped at the checkpoint at which the relative error of 
estimates falls below an acceptable threshold. This method 
should obviously be the one to be taught. Similar reasoning 
applies to methods which allow us to approximate a 
model�s behavior in steady state. These require more 
elaborate statistical methods (Pawlikowski 1990) and 
suitable motivation and attractive visualizations are 
therefore of great importance for teaching them well. 
7
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The problem with sequential stochastic simulation and 
any other simulation scenario aimed at obtaining 
satisfactorily precise results is that modeling even 
moderately complex models can require very long, or even 
prohibitively long, simulation runs. To reduce run lengths 
one could try to reduce the variance of estimators used for 
the analysis of simulation output. Unfortunately, while 
many different Variance Reduction Techniques (VRTs) 
have been proposed (see, for example, Law and Kelton 
1991) their robustness  and universality have been 
questioned  in practice. An alternative and frequently the 
only means for shortening run lengths of stochastic 
simulations is to execute models concurrently, using multi-
processor computers or computers linked in a local 
network. The methodology needed for executing such 
parallel simulations should also be an important ingredient 
for a simulation curriculum. One possible scenario, known 
as Multiple Replications in Parallel (MRIP),  can easy be 
applied  and has been implemented in the AKAROA-2 
modeling tool developed at the University of Canterbury 
(Ewing et al. 1999).  
 
4 AKAROA-2: AN AUTOMATED  

SIMULATION TOOL  
 
AKAROA-2 is the latest version of a fully automated 
simulation tool designed at the University of Canterbury. It 
is targeted at running distributed stochastic simulations  in 
the MRIP scenario over a local area network. The package 
has been designed mainly for use with simulation programs 
written in C or C++, but it can easily be adapted to work 
with other languages and systems; e.g. a Java port has been 
built at the University of Hamburg.  Akaroa has been used 
to aid our teaching of simulation methodology for a 
number of years.  

The capability to run  existing simulation programs in 
an MRIP scenario was one of Akaroa-2�s main design 
goals. It accepts an ordinary sequential simulation program 
and automatically launches the number of simulation 
engines requested by a given user. Any simulation program 
which produces a stream of observations and is written in 
C or C++,  or which can be linked with a C++ library, can 
be converted to run under AKAROA-2. This requires as 
little as a single procedure call per performance measure to 
be added to the existing code. Depending on the requested 
type of stochastic simulation (finite-time horizon or steady-
state simulation) appropriate sequences of checkpoints will 
automatically be generated and a statistically correct 
method of output data analysis will automatically be 
applied. The simulation will then be stopped when all 
results achieve  a specified level of relative statistical error; 
at a given level of confidence . Both of these measures will 
be specified by the user before the start of a simulation run.  
164
To aid its effectiveness in teaching a newer version of 
AKAROA-2 has been equipped with a graphical user 
interface (GUI). 

Figure 4 shows how this interface informs a user about 
a simulation in progress. The window shows the name of 
the simulation program  (here: mm1 0.95 in its upper left 
corner), followed by the required level of relative error (or 
precision) of the results (here: 0.05). The requested 
confidence level (here: 0.95) and current status of the 
simulation (�running��) is also shown. A table reports the 
status of the three simulation engines used in this example, 
followed  by a dynamic display of  the current relative 
error and another table displaying the current values of 
intermediate results. In the upper-right-hand-corner of the 
window we see two buttons. One is called �Add Engines�� 
and allows a user to accelerate a simulation by increasing  
the number of participating processors. The other button 
can be used to stop a simulation before its stopping 
condition has been reached. More details on AKAROA-2�s 
user interface can be found in Ewing et al (1999). 
 

 
 

Figure 4:  How Akaroa-2 Shows the Status of a Model in 
Execution 
 

AKAROA-2 offers fully automated analysis of mean 
values, both in the case of  finite-time horizon and steady-
state simulation. The methods of analysis used have been 
based on  an exhaustive survey of their quality, following 
the methodology presented in Pawlikowski et al. (1998). 
This research led to adoption of SA.HW.MRIP (a method 
of Spectral Analysis using the version proposed by 
Heildelberger and Welch (1981)) and its adjustment to 
MRIP (Pawlikowski et al. 1994) as the method of 
automated sequential analysis of steady-state mean values 
in the MRIP scenario. The length of the initial transient 
phase is also automatically detected following a sequential 
implementation of one of the tests proposed by Schruben 
(1982) for detecting the (non)stationarity of time series.  
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5 SUMMARY 
 
While there are some notable exceptions (e.g. Simscript 
II.5, QNAP2, Prophesy) sequential stochastic simulation 
techniques have unfortunately not been at all well 
supported by vendors of commercial simulation tools, 
which often rely on the persuasive power of sophisticated 
graphical presentation and animations instead. While the 
resulting lack of convenient tools to support teaching these 
methods poses a challenge, it also offers much opportunity 
for research. At the University of Canterbury we have 
developed a number of teaching tools for this purpose, 
such as the Akaroa family of simulation engines.  
 In summary we want to stress the importance of 
training computer scientists, telecommunication engineers 
and production planners in how to asses and minimise the 
errors inevitably associated with conclusions from models 
which use stochastic simulation techniques. This should be 
part of any educational program which teaches the use of 
simulation techniques, regardless of where it is situated or 
how widely or narrowly it casts its net. Unfortunately 
existing courses and programs do not always observe this 
requirement. There is a worrying trend of ignoring critical 
issues related to statistical credibility, which is also 
reflected in the relevant literature. A recent survey of 
publications shows this deficiency clearly (Pawlikowski et 
al 2000).  Let us try to improve this state of affairs by 
offering our students a solid foundations for all phases of 
simulation modeling and experimentation. 
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