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ABSTRACT

Discrete event simulation is frequently time-consuming e
ther because modern dynamic systems, such as teleco
munication networks, are becoming increasingly comple
and/or a great number of observations is required to yie
reasonably accurate results. An interesting approach to
duce the time duration of simulation is that of concurrentl
running multiple replications in parallel (MRIP) on a num-
ber of processors connected via networking and averagi
the results adequately. We present the results of our resea
on the suitability of batch-means-based procedures in su
distributed stochastic simulation.

1 INTRODUCTION

Analysis of output data from steady-state discrete-eve
simulation has attracted a considerable attention. A sou
methodology can be found in the literature (refer to Paw
likowski (1990) for a thorough review of problems and
solutions survey), but there are still open questions th
deserve attention, especially concerning the quality of th
results produced by a plethora of methods proposed f
simulation output data analysis.

Estimation of results during steady-state simulation i
a nontrivial problem because the output data are neith
independent nor identically distributed, but usually highly
correlated. In order to apply the classical statistical analy
sis, one can (for example) group observations in the outp
sequence in such a way that means over groups of obs
vations, are nearly uncorrelated. Such transformation
original output sequences is applied in a class of metho
of simulation output analysis known as Batch Means.
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Batch Meanstechniques are widely used due thei
conceptual simplicity and intuitive implementation. It is
based on the concept that if batches are large enough t
their mean values can be practically uncorrelated. The ma
challenge of this method is the determination of batch siz
see e.g. Schmeiser (1982).

The classical nonoverlapping batch means estima
(NOBM) is constructed by dividing a sequence {Xi} of n
steady-state observations, intob contiguous batches of size
m. Provided that correlations among batch means can
considered negligible at a certain significance levelβ, the
interval estimator for a performance parameterµ is given
as

P(X̄(n)−H ≤ µ ≤ X̄(n)+H) = 1− α (1)

where X̄ is the arithmetic mean of the sample of size n
and H is the half-length of the confidence interval define
as

H = tdf,1−α2 σ̂ [X̄]. (2)

The standard deviation of the batch means estimator ofµ

is σ̂ [X̄(n)], and tdf,1−α2 is the upper (1− α
2 ) critical point

of the t distribution withdf degrees of freedom.
In NOBM, df equalsb-1. In this paper, we discuss

three additional sequential methods based on Batch Meth
that can be run under MRIP, and use estimators with mo
degrees of freedom than in the case of NOBM. This sugge
that they could require shorter simulations to get final resu
with an acceptable statistical error.

In the following sections, our discussion is based o
the results from sequential stochastic simulation of a
M/M/1/∞, in which the mean waiting time was esti-
1
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mated, with the relative statistical error not greater than
5%, at 95% of confidence level.

The main performance criterion for a confidence inter-
val procedure is its coverage, defined as the frequency o
the confidence intervals containing the true parameterµ.
Usually, the coverage is assessed on a fixed-sample bas
but we are of the opinion that coverage analysis should
be analysed sequentially. Therefore, we have applied th
sequential coverage analysis proposed in (Pawlikowski e
al. 1998). Following this approach, the coverage analysis
begins when a minimum number (we assumed 200) of ba
confidence intervals, i.e. confidence intervals that do no
contain theoretical value, are collected, and results from
too short runs are discarded.; It stops when the relative
precision of the confidence intervals for the coverage is les
than 5%.

2 SEQUENTIAL ANALYSIS

Sequential procedures of simulation output data analysi
are widely recognized as the only effective techniques for
controlling the final precision of simulation results. In the
sequential procedures analysed here we apply sequenti
versions of batch-means-based techniques together with s
quential test for detecting the length of the initialtransient
period, proposed by Schruben (1982).

In NOBM, in its version presented in Pawlikowski
(1990), for reducing dependence between batch mean
correlation coefficients for lag k (k=1, …,n) are tested
sequentially. If all these correlations cannot be considere
negligible at a significance levelβ = 0.01, more observa-
tions are collected and the test is repeated.

To improve the quality of this test, we applied a non-
parametric method based on jackknife estimators, for cal
culating the correlation coefficients.

When independence test succeeds, observations a
grouped into 25 batches according to Schmeiser’s results
and estimation phase initiates. From now on, when NOBM
collects a batch of sizem∗, the optimal batch size found
in the previous phase, a checkpoint is reached and, if de
sired relative precision is detected, simulation stops. This
sequential method behaves acceptably when system loa
ρ < 90%, but as load increases its quality worsens (se
Table 1).

This asymptotic failure was expected by Glynn and
Whitt (1991), when they showed that “there is no variance
estimator based on a fixed number of batch that is consistent
In light of that, we introduced a variant of NOBM to get
rid of this anomaly, and called it NOBM/GW : at each
checkpoint, when the relative precision is not achieved
the number of batches increases by 2. This increment i
enough to keep in touch with Schmeiser’s findings and, a
the same time, to guarantee a better asymptotic behavio
Table 1 shows that NOBM/GW indeed improves somewha
762
,
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Table 1: Performance of Batching Methods un-
der MRIP: cov±H Is a Confidence Interval
for the Coverage; E[O] Is the Average Sample
Size, and CoV{H} Is the Coefficient of Varia-
tion of the Confidence Interval Half-length for
the Coverage

NOBM
ρ (%) cov ±H E[O] CoV{H}

91 91.10± 1.4 545.27 0.0390
92 88.90± 1.7 661.25 0.0393
93 87.60± 1.9 829.99 0.0398
94 86.60± 2.0 1079.23 0.0407
95 86.00± 2.2 1474.18 0.0381

NOBM/GW
ρ (%) cov ±H E[O] CoV{H}

91 90.06± 1.5 557.78 0.0297
92 88.80± 1.7 674.15 0.0307
93 88.60± 1.7 851.09 0.0313
94 88.40± 1.8 1095.49 0.0320
95 86.50± 2.0 1501.23 0.0339

SBM
ρ (%) cov ±H E[O] CoV{H}

91 91.20± 1.4 559.37 0.0294
92 89.90± 1.5 677.01 0.0308
93 89.20± 1.6 858.13 0.0313
94 88.10± 1.8 1101.58 0.0318
95 87.60± 1.9 1505.77 0.0335

OBM
ρ (%) cov ±H E[O] CoV{H}

91 94.90± 0.8 747.76 0.0252
92 94.50± 0.9 925.23 0.0257
93 95.20± 0.8 1191.40 0.0254
94 94.70± 0.9 1573.26 0.0259
95 94.20± 1.0 2210.58 0.0258

the coverage in very high-loaded systems, when compar
to classical NOBM.

As an attempt to weaken the strong correlations, we als
designed and implemented a sequential version of a fixe
sample size technique proposed by (Fox et al. 1991),
which one discards some observations between consecut
batches. This is the so-calledSpaced Batch Means(SBM)
technique. As in NOBM, the number of batches increase
in the estimation phase, if needed.

When the numbers of discarded observations iss=0,
we have the classical NOBM. Theoretically, the greate
s, the better should be the coverage of final results, b
that imposes an obvious problem of throwing out many
observations. We have adopted a spacing equal 20% of t
initial batch size but the best solution would probably be to
determines according to the properties of the underlying
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stochastic process. Table 1 shows that, in the reported cas
SBM is a bit better in the sense of coverage than NOBM
and NOBM/GW.

Finally, we implemented a sequential version ofOver-
lapping Batch Means(OBM), proposed by Meketon and
Schmeiser (1984), which reuses some observations of o
batch for constructing the next (overlapping) batch of ob
servations. The original work suggested that after finding
m∗, each observation should initiates a new (overlapped
batch. Of course, batch means are becoming strongly co
related but the number of batch means is much larger an
that compensates the negative effect of correlation. Welc
(1987), studied the possibility of achieving the same result
with partial overlapping.

One can clearly see in Table 1 that, in terms of coverage
OBM behaves much better than the other methods. Its fin
confidence intervals are more stable and achieve almo
perfect coverage for high values ofρ.

3 MULTIPLE REPLICATIONS

Research on speeding up execution of simulation mode
is a challenging problem which has attracted a conside
able scientific interest and effort. A simple yet effective
way to exploit computer networks for computationally inten-
sive discrete-event simulation is to run multiple independen
replications in parallel (Pawlikowski 1994), on multiple pro-
cessors and to average the results appropriately. Of cours
each replication should be run using different, independen
sequence of (pseudo) random numbers. This way, by usin
P processors simulation output data can be generated P tim
faster. The only communication overhead of MRIP is asso
ciated with loading of the model into different processors
(at the beginning of simulation) and with transmissions o
data to a central analyser whenever a checkpoint is reache
to calculate global estimates. This approach is statisticall
efficient provided that the initialization bias is not severe
(Heidelberger 1986).

MRIP approach offers a quite simple solution concerne
with the credibility of the final simulation results. Refer to
(Pawlikowski et al. 1994), and (Mota et al. 1999, 2000)
for other investigation issues in these area.

4 ACHIEVABLE SPEEDUP

According to Amdahl’s law (1967), if a fractionf of a
computation is inherently sequential, then the speedup S(
is bounded above by

S(P ) = 1

f + 1−f
P

(3)

where P is the number of processors andf is defined
to be the ratio of the service demand of sequential par
763
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of the computation to the service demand of the entire
computation.

In steady-state simulation, considering that results ar
analyzed sequentially, MRIP imposes a limit to the averag
speedup that should be incorporated into above expressio

Let Nmin be the number of collected observations,
sufficient for achieving the required precision of the final
results. One could think of a situation in which there are
so many processors employed that each one achieves ju
the first checkpoint only, and the stopping rule is reached
Let this number of processors bePmin.

Let No be the length of the transient phase,N1 be the
amount of observations collected until the first checkpoin
is achieved, and D be the distance between consecuti
checkpoints (Figure 1). A truncated version of Amdahl’s
law for the MRIP scenario, formulated in (Pawlikowski and
McNickle 2000) states that:

S(P ) =


1

f+ 1−f
P

if P ≤ Pmin

1
f+ 1−f

Pmin

otherwise
(4)

0 N

. . .
min

D D

NNo 1

Figure 1: Steady-State Structure

In Batch Means techniques, observations collected du
ing initial transient phase are not used by steady state es
mates, thus:

f = N0

Nmin

Note that if D means the number of observations col
lected between consecutive checkpoints, thenPmin times D
observations is needed to stop the simulation. That is

Pmin = (1− f )Nmin
D

= Nmin −N0

D
(5)

Considering the classical NOBM, NOBM/GW and
SBM, D is at least equal tom∗,

OBM offers greater flexibility as D can be smaller
thanm∗. Namely, in the case of complete overlapping, the
distance between checkpoints can be, theoretically, as sho
as 1. Thus, forf remaining the same as in the previous
methods,Pmin can be considerably greater in OBM.

5 EMPIRICAL INVESTIGATION

The following discussion will be based on the results ob
tained by AKAROA-2, an MRIP implementation developed
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5.1 Speedup

To assess the average speedup obtained when the sequen
batching techniques considered are applied inMultiple Repli-
cations in Parallelscenario, we simulated anM/M/1/∞
queuing system, with traffic intensity 95%, and constructe
a confidence interval at 95% of confidence level.

A specific feature of sequential techniques is that ran
domness of data collected at the output of the model bein
analyzed can fortuitously yield the stopping condition much
earlier than it could be expected, and that can lead to wron
results. In light of that, we adopted a rule of thumb pro-
posed by (Ruth Lee et al. 1999). Namely, while using P
processors we:

1. run the simulation experiment 3 times;
2. accepted the results produced by the longest sim

ulation run only;
3. recorded the average length of the transient phas

measured by the number of transient observation
No discarded by each of P processors;

4. recorded the average number of observationsN1
required to achieve the first checkpoint;

5. recorded the average total number of observation
Nmin when simulation was stopped.

Each time when these steps were followed, we obtaine
an n-uple (No,N1, Nmin). To improve the accuracy of
the results we repeated the above sequence 100 times a
averaged the results at the end. We repeated the who
experiment for P=2, 4, 6, 8, 10, 15 and 20 processors, a
shown in Table 2.

Pmin, the number of processors that could still give
a speedup, was calculated from the truncated Amdahl
law, using the results obtained from simulations on P=1
processors.

5.2 Granularity

In AKAROA-2, each simulation engine collects a number of
observations before calculating an estimate that is sent to
global analyzer. In the case of methods based onbatching,
one should wait until a number of batches are collecte
since only then an estimate can be obtained.

The complete overlapping version ofOBM offers an
attractive alternative in terms of batching methods unde
MRIP, as each new observation can be used to form a ne
overlapped batch, and an estimate can be obtained.

To investigate the complete overlapping version o
OBM, by varying the distance D between checkpoints
we have simulated anM/M/1/∞ queuing system, with
76
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Table 2: Achieved Speedup S(P) by Varying the
Number of Replications in Parallel

D = m∗
P Pmin No N1 Nmin S(P)
1 832 626 85300 710110 1.000
2 832 707 78100 698875 1.998
4 832 602 76658 715507 3.989
8 832 651 64322 665697 7.946
10 832 648 63628 666770 9.913
15 832 641 62459 656010 14.798
20 732 638 63496 659464 19.639

D = m∗/10
P Pmin No N1 Nmin S(P)
1 8655 629 81800 708609 1.000
2 8655 666 72550 709144 1.998
4 8655 617 78913 732444 3.990
8 8655 656 71787 725743 7.950
10 8655 647 67763 698836 9.917
15 8655 673 65203 682858 14.796
20 8655 639 66727 686178 19.652

D = m∗/50
P Pmin No N1 Nmin S(P)
1 43551 617 81600 711375 1.000
2 43551 661 81650 722998 1.998
4 43551 647 77000 743142 3.990
8 43551 671 76001 749429 7.950
10 43551 660 69405 721601 9.918
15 43551 664 69427 708131 14.806
20 43551 635 60686 629966 19.624

traffic intensity 95%, stopping the simulation when the re
ative precision reached 5% or less. Figures 2, 3 and
summarize this experiment.

Figure 2 shows the rate within which a sequentia
confidence interval procedure based on OBM converges
the desired relative precision. Clearly, this convergenc
becomes slower as the distance D between consecut
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Figure 2: Convergence of Relative Precision : P = 1
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Figure 3: Convergence of Relative Precision : P = 2
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Figure 4: Convergence of Relative Precision : P = 4

checkpoints decreases (D is measured in the number
observations). Either the variance increases as we try
reduce the spacing between consecutive checkpoints, or
variance reduces very slowly. Figures 3 and 4 show t
same effect but the degree of parallelization was increas
and convergence was somewhat faster than for P=2 a
P=4, respectively.

6 FINAL REMARKS

Our investigation of methods based on the concept of Bat
Means show that OBM is very robust in the sense th
it yields confidence intervals with probability close to th
nominal confidence level, especially when traffic intensi
is very high. An analysis of the performance of this metho
applied to queuing networks can be found in (Fitzek et a
2000).

MRIP is a promising, though somewhat unpopular, a
proach for speeding up stochastic simulation experiments
complex dynamic systems. We have applied this method
ogy on simulation of modern telecommunication problem
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and we have gotten very impressive results in terms of bo
speedup and quality of final results. The additional effor
required from the analyst was minimal, since MRIP imple
mentation in AKAROA-2 appeared to be very user-friendly
Currently, we are investigating other methods of simulatio
output data analysis, including those based on the conce
of standardized time series.
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