
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

THE MONARC TOOLSET FOR SIMULATING LARGE
NETWORK-DISTRIBUTED PROCESSING SYSTEMS

Iosif C. Legrand
Harvey B. Newman

Charles C. Lauristsen Laboratory of High Energy Physics
California Institute of Technology

Pasadena, CA 91125, U.S.A.
ABSTRACT

The next generation of High Energy Physics experiments
have envisaged the use of network-distributed Petabyte-
scale data handling and computing systems of
unprecedented complexity. The general concept is that of a
�Data Grid Hierarchy� in which the central facility at the
European Laboratory for Particle Physics (CERN) in
Geneva will interact and coherently manage tasks shared
by and distributed amongst national �Tier1 (National)
Regional Centres� situated in the US, Europe, and Asia.
CERN and the Tier1 Centers will further communicate and
task-share with the Tier2 Regional Centers, Tier3 centers
serving individual universities or research groups, and
thousands of �Tier4� desktops and small servers.

The design and optimization of systems with this level
of complexity requires a realistic description and modeling
of the data access patterns, the data flow across the local
and wide area networks, and the scheduling and workload
presented by hundreds of jobs running concurrently on
large scale distributed systems exchanging very large
amounts of data.

The simulation toolset developed within the �Models
Of Networked Analysis at Regional Centers� - MONARC
project provides a code and execution time-efficient design
and optimisation framework for large scale distributed
systems. A process-oriented approach for discrete event
simulation has been adopted because it is well suited to
describe various activities running concurrently, as well the
stochastic arrival patterns typical of this class of
simulations. Threaded objects or �Active Objects� provide
a natural way to map the specific behaviour of distributed
data processing (and the required flows of data across the
networks) into the simulation program.

This simulation program is based on Java2(TM)

technology because of the support for the necessary
methods and techniques needed to develop an efficient and
flexible distributed process oriented simulation. This
includes a convenient set of interactive graphical
17
presentation and analysis tools, which are essential for the
development and effective use of the simulation system.

The design elements, status and features of the
MONARC simulation tool are presented. The program
allows realistic modelling of complex data access patterns
by multiple concurrent users in large scale computing
systems in a wide range of possible architectures. Compari-
son between queuing theory and realistic client-server
measurements is also presented.

1 INTRODUCTION

The future Large Hadron Collider (LHC) experiments have
envisaged Computing Models involving many hundreds of
physicists doing analysis at institutions around the world
(Newman 1999). These Models encompass a complex set
of wide-area, regional and local-area networks, a
heterogeneous set of compute- and data-servers, and a yet-
to-be determined set of priorities for group-oriented and
individuals� demands for remote data and compute
resources. Each of the experiments foresees storing and
partially distributing data volumes of Petabytes per year,
and providing rapid access to the data over regional,
continental and transoceanic networks. Computational
Grid technology (Foster and Kesselman 1999) extended to
data intensive tasks and worldwide scale could be used to
effectively manage such systems (Newman 2000).
Distributed systems of this size and complexity do not exist
yet, although systems of a similar size to those foreseen for
the LHC experiments are predicted to come into operation
by around 2005.

The aim of this paper is to describe the simulation
program, being developed by the MONARC project, as a
design and optimization tool for such large scale
distributed computing system. The goals are to provide a
realistic simulation of distributed computing systems,
customized for specific physics data processing and to
offer a flexible and dynamic environment to evaluate the
performance of a range of possible data processing
94

Legrand and Newman
architectures. The simulation program was designed as a
tool to study very large distributed systems. It is not
intended to be a detailed simulator for basic components
such as operating systems, data base servers or routers.
Instead, based on realistic mathematical models and
measured parameters on test bed systems for all the basic
components, it aims to correctly describe the performance
and limitations of large distributed systems with complex
interactions. At the same time it provides a flexible
framework for evaluating different strategies for
middleware design, providing dynamic load balancing and
optimising resource utilisation as well as turnaround time
for high priority tasks.

2 DESIGN CONSIDERATIONS

The simulation and modelling task for MONARC requires
the description of both simple and complex data processing
programs, running on large scale distributed systems,
interacting and exchanging very large (and small) amounts
of data.

An Object Oriented design, which allows an easy and
direct mapping of the logical components into the
simulation program and provides the interaction
mechanism, offers the most flexible, extensible solution for
modelling such large-scale systems. This design approach
also copes with systems which may scale and change
dynamically.

A process-oriented approach for discrete event
simulation is well suited to describing concurrent running
programs, as well as all the stochastic arrival patterns that
characterise how such systems are used. Threaded objects,
or �Active Objects� (having an execution thread, program
counter, stack, mutual exclusion mechanism...), offer great
flexibility in simulating the complex behaviour of
distributed data processing programs. This approach offers
a natural way of describing complex running programs that
are data dependent and which concurrently compete for
shared resources (Legrand 2000).

The MONARC simulation program is built with
Java(TM) technology. Java has built-in multi-thread support
for concurrent processing, which can be used for
simulation purposes by providing a dedicated scheduling
mechanism. Java also offers good support for distributed
objects (RMI and CORBA) architectures and for graphics.
The flexible graphics tools, and facilities to analyse data
interactively, are essential in any simulation project.

The tool�s �simulation engine� provides a dedicated
scheduling mechanism that is based on semaphores for the
�Active Objects�. It also provides a mechanism to
dynamically add or remove objects from the system.
Handling dynamically loadable modules is essential to
describe complex configurations which may change or
evolve in time. The �Active Object� is the basic class that
must be inherited by all the entities in the simulation, which
17
require a time dependent behaviour. It provides the methods
for synchronous and asynchronous communications with
other objects, and the mechanism to communicate with the
simulation engine so that it can be interrupted, suspended
and resumed during execution. Objects which extend this
basic class may implement any specific time dependent
behaviour, which can be a function of messages or data
received, its previous state(s), and its access to certain shared
resources. In this way it is possible to implement highly
non-linear processes such as caching and swapping. It also
offers a means of describing the stochastic input pattern for
jobs and activities in the system.

As the number of jobs necessary to be simulated in
such applications may be huge, a dedicated structure that
allows �Active Objects� recycling was implemented to
improve the simulation efficiency. The interrupt
mechanism, implemented as an atomic (synchronised) self
addressed event, for the �Active Objects� offers an
effective way to simulate discrete event processes
assuming a �continuous� flow in time between events
which modify parts of the system.

Shared resources, like CPU or I/O links, are rep-
resented in the simulation as normal objects, but access to
their different update methods needs to be made, synchron-
ised with the external �running� entities. There is a mutual
exclusion mechanism when accessing unique atomic parts
that avoids interruption: this guarantees the correct
representation of the execution of concurrent processes.

A detailed but still intuitive Graphical User Interface
(GUI) to the simulation program allows the user to change
parameters dynamically, to load user-defined modules with
specific time response functions, and to monitor and
analyse the simulation results. It provides a powerful
development tool for evaluating and designing large scale
distributed systems.

3 COMPONENTS MODEL

The simulation program requires the abstraction of all
components from the real system and their time dependent
interactions. This abstracted model has to be equivalent to
the original system in the key respects that concern us. The
simulation engine is designed to be generic for any
distributed system. However, there are certain HEP-
specific system components that are specially modelled to
make the tool useful to the physics community. The major
components are described below.

3.1 Data Model

The current data model follows the Objectivity/DB
architecture and the basic object data design used in HEP.
This model allows an efficient way to describe very large
database systems with a huge number of stored objects.
95

Legrand and Newman
The atomic unit object is the �Data Container�, which
emulates a database file containing a set of objects of a
certain type. In the simulation, data objects are assumed to
be stored in such �data container� files in a sequential
order. In this way the number of objects used in the
simulation to model large number of real objects is
dramatically reduced, and the searching algorithms are
simple and fast. Random access patterns, necessary for
realistic modelling of data access, are simulated by creating
pseudo-random sequences of indices. Clustering factors for
certain types of objects, when accessed from different
programs, are simulated using practically the same scheme
to generate a vector of intervals. A �Database Unit� is a
collection of containers and performs an efficient search
for type and object index range.

The database server component simulates the client-
server mechanism used to access objects from a database.
It implements response time functions based on data
parameters (page size, object size, access is from a new
container, etc.), and hardware load (how many other
requests are active at the same time). In this model it is
also assumed that the database servers control the data
transfers from/to the mass storage system.

Different policies for storage management may be
used in the simulation. The model is designed to handle a
very large number of objects while at the same time
providing an automatic storage management scheme. It
allows the emulation of different clustering schemes in the
data for different types of data access patterns, and the
simulation of ordered data access when following the
associations between the data objects, even if the objects
reside in databases located in different database servers.

3.2 Multitasking Data Processing Model

This is based on sharing resources such as CPU, memory
and I/O between concurrently running tasks by scheduling
their use for very short time intervals. The model is based
on an �interrupt� driven mechanism implemented in the
simulation engine. It calls the interrupt method
implemented in the �Active Objects�, which is the base
class for all �running entities�. The way it works is shown
schematically in Figure 1.

Figure 1: Modelling Multitasking Processing Based on an
�Interrupt� Scheme
179
Referring to this figure, when a first job (Task1) starts,
the time it takes is evaluated (original TF1), and this
�Active� object enters into a wait state for this amount of
time unless it is interrupted. If a new job (Task2) starts on
the same hardware, it will cause an interrupt to the first
task. Both tasks will share the same CPU power and the
time to complete for each of them is re-computed assuming
that they share the CPU equally or based on a running
priority scheme (new TF1 and original TF2). Then both
jobs will enter into a wait state and listen for other
interrupts. When the first job (Task1) is finished, it creates
another interrupt to re-distribute the resources for the
remaining jobs. This model assumes that resource sharing
is maintained between any discrete events (e.g. new job
submission, job completion) that occur during the
simulated time interval.

3.3 Network Model

Accurate and efficient simulation of networking is also a
major requirement for the MONARC simulation project.
The simulation program should offer the possibility to
simulate data traffic for different protocols on both LAN
and WAN. This has to be done without precise knowledge
of the network topology. We note that it is practically
impossible to simulate the network on a packet-by-packet
basis for large amounts of data.

User-defined time dependent functions are used to
evaluate the effective bandwidth. The approach used to
simulate the data traffic is based on an �interrupt� scheme
similar to the multitasking model described above. When a
message transfer starts between two end points in the
network, the time to completion is calculated. This transfer
time is calculated using the minimum speed of all the links
between the end points, and it may be a function of the
network protocol being used. The time to complete is used
to generate a wait statement that can subsequently be
interrupted in the simulation. If a new message is initiated,
an interrupt is generated for the LAN/WAN object. The
speed for each transfer affected by the new one is re-
calculated, assuming that the transfers are running in
parallel and share the bandwidth (with weights depending
on the protocol). With this new speed the time to
completion for all the messages affected is re-evaluated
and inserted into the priority queue for future events. This
approach requires an estimate of the data transfer speed for
each component and the round trip time for each network.
For a long distance connection an �effective speed�
between two points has to be used. This value can be fully
time dependent to emulate �outside� traffic sharing the
same lines, as well as the averaged effects of overheads
and performance limitations associated with certain
network protocols and conditions such as packet loss.

This approach for data transfer provides an effective
and accurate way of describing many large and small data
6

Legrand and Newman
transfers occurring in parallel on the same network. This
model cannot describe speed variation in the traffic during
one transfer if no other transfer starts or finishes. This is a
consequence of the fact that we have only discrete events
in time. However, by using smaller packages for data
transfer or artificially generating additional interrupts for
LAN/WAN objects, the time interval for which the
network speed is considered constant can be reduced. As
before, this model assumes that the data transfer between
time events is done in a continuous way utilising a certain
part of the available bandwidth.

3.4 Arrival Patterns

A flexible mechanism of defining the stochastic process of
submitting jobs is necessary. This is done using the
�dynamic loadable modules� feature in Java, which
supports the ability to include (threaded) objects into
running code. These objects are used to describe the
behaviour of a �User� or a �Group of Users�. It should be
able to describe both batch and interactive sessions, and
also to use any time dependent distribution describing how
jobs are submitted. An �Activity� object is the base class
for all activity processes to estimate the time dependent job
arrival patterns and correlation. These Activity objects are
in fact the job injectors into the simulation framework.

The user can provide very simple sections of Java
code, to override the �RUN� method of the �Activity�
class, and provide the time dependent profile of different
job submission activities, as shown schematically in Figure
2. Any number of �Activity� objects may be dynamically
loaded via the GUI allowing them to be studied
independently or all together.

Figure 2: Modelling Jobs Submission into the System

4 REGIONAL CENTER MODEL

The �Regional Centre� (Figure 3) is a complex, composite
object containing a number of data servers and processing
nodes, all connected to a LAN. Optionally, it may contain a
Mass Storage unit and can be connected to other Regional
Centres. Any regional centre can dynamically instantiate a
set of �Users� or �Activity� objects, which are used to
generate data processing jobs based on different scenarios.

 for(int k=0; k<no_jobs; k++) {
 Job job = new Job(ANALYSIS);

farm.addJob(job); // submit the job
sim_hold (1000); // wait 1000 s

 }

Regional Centre Farm

Job Job

Job

Activity
179
Inside a Regional Centre different job scheduling policies
may be used to distribute jobs to processing nodes.

Figure 3: An Example Regional Center (Sub)-Model

5 THE GRAPHICAL USER INTERFACE
AND AUXILIARY TOOLS

An adequate set of GUIs to define different input
scenarios, and to analyse the results, is essential for the
simulation tools. The aim in designing these GUIs was to
provide a simple but flexible way of defining the
parameters for simulations and the presentation of results.

The number of regional centres considered can be
changed through the main window of the simulation
program. The �Global Parameters� frame allows the
(mean) values and their statistical distributions for
quantities, which are common in all Regional Centres to be
changed. The hardware cost estimates for the components
of the system may also be obtained. For each Regional
Centre in the simulation, the user may interactively select
the parameters which are graphically presented (CPU
usage, memory load, load on the network, efficiency,
Database servers� load etc). Basic mathematical tools are
available to examine all simulation results: computation of
integrated values, mean values and integrated mean values.

To publish or store the simulation results and all the
relevant files used in the simulation, an automatic pro-
cedure has been developed. This allows publishing locally,
or to a MONARC Web server. The Web Page thus offers a
repository for different simulation studies within the
MONARC Collaboration (The MONARC repository Web
page). There can be found the configuration files, the Java
source code used to certain modules and the results (tables
and graphic output) for any given simulation runs. The
aim of this facility is to provide an easy way to share ideas
and results. The publishing procedure is implemented in
Java using the Remote Method Invocation mechanism. The
schematic view of how this works is shown in Figure 4.
7

Legrand and Newman
Figure 4: Simulation GUI and the �Publishing�
Mechanism

6 COMPARISON WITH QUEUING THEORY

A few basic comparisons of the simulation program with
Queuing Theory (Haverkort 1998) have been made.

Web Server

afs/nfs file system

RMI Server
17
6.1 M|M|1 Model

This model consists of a queuing station where jobs arrive
with a falling exponential inter-arrival time distribution
with rate λ. Furthermore, the job time service
requirements are also negative exponentially distributed
with mean E[S] =1/µ.

Figure 5: M|M|1 Queuing Model

The simplest queueing model M|M|1 theory gives the
formula for mean number of jobs in the system and the
mean response time:

(1)E N[]
ρ

1 ρ–
------------= E R[] E S[]

1 ρ–()
-----------------=

a nd

where E[N] is the mean number of jobs in the system, E[R]
mean response time of the system, E[S] - mean serve time
of the system, and the utilisation ρ=λ/µ.

This can be described in the simulation program as a
data base server acting as a queuing station for data request
from clients with the same time distribution. The results
for different arrival rate shown in Figure 6 reproduce the
mean number of jobs in the queue.

Figure 6: Comparison with Queuing Theory for the M|M|1
Model

6.2 M|M|1 Network Queue Model

This type of queuing model consists of a chain of M|M|1
queues. In this case the mean total number of jobs in the
system and the mean total response time of the network are
defined by:

(2)E N[] E

i 1=

r

∑ Ni[]
ρi

1 ρi–

i 1=

r

∑= = E R[] E Ri[]
i 1=

r

∑ E S i[]
1 ρi–()

i 1=

r

∑= =

E[S]

Arrivals Waiting In Service
98

Legrand and Newman
where the utilisation for each stage is

In the simulation program, it can be modelled by
creating a sequence of jobs processing correlated data and
having different sizes and processing times. Figure 7 shows
the mean number of jobs and the mean response time as a
function of system utilisation for the M|M|1 network queue
model.

Figure 7: Comparison with Queuing Theory for the M|M|1
Network Model

7 TESTBED MEASUREMENTS AND
VALIDATION OF THE SIMULATIONS

Distributed applications on wide area networks give rise to
stringent performance demands that are not satisfied by
any existing data, CPU and network
management/monitoring infrastructure. The aim of the
testbeds has been to study the efficiency and behaviour as a
function of both the network characteristics, and the
parameters of an ODBMS based application
(Objectivity/DB) for distributed analysis of experimental
data. The dynamic usage of system and network resources
at host and application level has been measured in different
client/server configurations, on several LAN and WAN
layouts. Measurement evaluation has identified system
bottlenecks and resource limitations. In addition, efficient
working conditions in the different scenarios have been
defined, and some critical behaviour has been observed
when moving away from the optimal working conditions.

 The future improvement of the monitoring tools,
providing online visualisation of resource utilisation, has
been identified as important, not only for troubleshooting,
but also for the development of authorisation policy and
workload management in general.

The evaluation of a computer and network system
involves the iteration of measurement, modelling of the
system behaviour, development of the simulation tools and
then validation (Haverkort, 1998). With sufficient
iterations of the above cycle, one can predict the behaviour
of the system for various types of loads with sufficient

ρi
λ
µi
----=
17
accuracy. Therefore the validation of the MONARC
Simulation tools should be closely related to the required
�level of detail� as the project aims for improved accuracy
with greater detail in the system modelling.

In particular, sharing of the common resources such as
CPU, storage I/O bandwidth, local and wide-area network
bandwidth, queuing mechanisms, and the performance of
the distributed ODBMS systems are shown to be the key
parameters to estimate the overall performance of the
regional centres models.

7.1 Comparison with Simulation

Several testbed environments have been set up by the
Testbeds Working Group at CERN, KEK, INFN, Caltech,
and SLAC. These sites are connected with various types of
wide area networks, such as dedicated satellite links, ATM
permanent virtual circuits and QoS services (Morita et al.
2000).

Examples of physics analysis applications using
Objectivity/DB have been developed and tested in these
environments. Monte Carlo simulated raw data was
converted into Objectivity/DB database format. A simple
C++ program was written to read every object in the event
using a database iterator. Multiple jobs were run on the
system with three configurations: (1) Local file database
access on one machine (machine A), (2) Local file
database access on another machine (machine C) and (3) a
pair of machines acting as client and server of
Objectivity/DB AMS (Advanced Multi-thread Server). The
job execution time and the CPU utilisation were measured
as a function of the number of multiple concurrent jobs.
The profile of the jobs, such as CPU cycles per event, were
deduced from two machines with different CPU power and
disk I/O speed.

The simulation results reproduce the testbed
measurements very well for the concurrent running of jobs
as shown in Figure 8.

The same set of job profile parameters also
qualitatively reproduces the distribution of job execution
time for concurrently competing for the same resources as
shown in Figure 9.

Another set of measurements was performed on a QoS
network using various link speeds between the AMS server
and clients. The data model used in the measurements was
a set of event data of various sizes. The job profile
parameters were extracted from the single job
configuration and the behaviour of the concurrent job
execution was reproduced with the simulation program.
Results for multiple concurrent clients are presented in
Figure 10, for a 100Mbps Local Area Network (a) and a
2Mbps Wide Area Network (b). The simulation tool
reproduces the measured job execution time of concurrent
Object database access using local and wide area networks.
A set of tools and methods has been developed to make
99

Legrand and Newman

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35

Nr. of concurrent jobs

M
ea

n
Ti

m
e

pe
r j

ob
 [m

s]

Local DB (machine C) Local DB (machine A) AMS
Sim Local DB Sim Local DB Sim AMS

Figure 8: Comparison of Measured Values with
Simulation

Measurements

0

5

10

15

20

25

30

35

100 105 110 115 120

Time (sec)

Jo
bs

Simulation

0

5

10

15

20

25

30

35

110 110.5 111 111.5 112 112.5 113

Time (sec)

Jo
bs

Figure 9: Profile of Job Execution Times: Measurements
versus Simulated Results

0

200

400

600

800

1000

1200

0 10 20 30 40

Nr. of concurrent jobs

Ti
m

e
 [s

]

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25

Nr. of concurrent jobs

Ti
m

e
 [s

]

Measurements Simulation

Figure 10: Comparison of the Measurements with
Simulation for Concurrent Multiple Client Access: (a)
WAN at 2Mbps, (b) LAN at 100Mbps

a profile of a given analysis job, and to monitor the
performance of the distributed data analysis environment.
The behaviour of the distributed ODBMS has been
modelled and validated.

a b
180
However, it is important to understand that the
evaluation of the system performance is a continuous cycle
of refining modelling, testing and validation. To make a
reliable prediction of the system performance, more detail
modelling of the analysis job and the validation of key
system components such as hierarchical mass storage
system are necessary.

8 A SIMPLE EXAMPLE

As an example we consider a typical activity to analyze
physics events by several groups in one regional center.
Assuming that 1000 jobs are submitted for execution with a
specific time distribution, we compare the resource utilization
in the system with the Job�s response time distribution which
may reflect the �user satisfaction� and the efficiency in
analyzing data. In Figure 11 three cases are presented. A high
resource utilization (Figure 11a) provides a quite slow
response time, practically twice the �theoretical� time
expected by the user. A fast response time may be achieved,
but without a high utilization factor for resources (Figure 11c).
Finding the cost-effective solution and the strategies in jobs
submission, priority and resource allocations is one of the
challenges this project has to solve.

9 SUMMARY

A CPU and code-efficient simulation approach to the
problem of simulation of distributed computing systems
has been developed and tested within the MONARC
Collaboration. It provides a transparent way to map the
distributed data processing, data transport and analysis
tasks onto the simulation frame, and can describe
dynamically even very complex computing models.

The Java(TM) programming environment, used
extensively to build the MONARC simulation tool, is very
well suited for developing a flexible and distributed
process oriented simulation, equipped with adequate
graphical and statistical tools.

This simulation program is still under development to
include more sophisticated methods to evaluate different
strategies to optimise the utilisation of resources in very
large scale distributed computing systems.

ACKNOWLEDGMENTS

This work has been performed in collaboration with the
MONARC project at CERN. We would like to thank
CERN IT Division for the hospitality and support extended
to I. Legrand during the course of this work. K. Sliwa, A.
Nazarenko, A. Dorokhov, Y. Morita, L. Perini, P.
Capiluppi and I. Gaines made important contributions to
the simulation system features or to the definition of the
physics models discussed in this paper. This work has been
partially supported by DoE Grant DE-FG03-92-ER40701.
0

Legrand and Newman

Figure 11: Resource Utilization and Job Efficiency for a
Typical High Energy Physics Data Analysis Activity, as a
Function of the CPU Power Installed

Mean

Mean

Mean

180

200

250

a

b

c
18

REFERENCES

Foster, I. and Kesselman, C., 1999. The GRID: Blueprint

for a New Computing Infrastructure. Morgan
Kaufmann Publishers, San Francisco.

Haverkort B.R., 1998. Performance of Computer
Communication Systems, John Wiley & Sons Ltd.

Legrand I., 2000. Multi-threaded, discrete event
simulation of distributed computing system,
CHEP2000, Padua, Italy, <http://chep2000.
pd.infn.it/> paper number 148).

Objectivity: <http://www.objy.com/> and at
CERN: <http://wwwinfo.cern.ch/asd/
lhc++/Objectivity/>

Morita, Y. et al., 2000. Validation of the MONARC
Simulation Tools, CHEP2000, Padua, Italy
<http://chep2000.pd.infn.it/>, paper
number 113.

Newman, H., 1999. Distributed Computing and Regional
Centres. LCB Marseilles Workshop <http://
lcb99.in2p3.fr/HNewman/Slide1.html>

Newman, H., 2000. Worlwide Distributed Analysis for the
Next Generations of HENP Experiments, CHEP2000,
Padua, Italy <http://chep2000.pd.infn.
it/>, paper number 385.

The MONARC simulation repository <http://www.
cern.ch/MONARC/sim_tool/Publish/publ
ish/>

The MONARC Project, <http://www.cern.ch/
MONARC>

AUTHOR BIOGRAPHIES

IOSIF C. LEGRAND is a Senior Software Engineer and a
full time staff member of Caltech. He is the principal
developer of the MONARC simulation system. His E-mail
and web addresses are <Iosif.Legrand@cern.ch>
and <http://home.cern.ch/cil>.

HARVEY B. NEWMAN is a Professor of Physics at
Caltech and Chair of the Collaboration Board of the US
high-energy groups in the CMS experiment. He was a
former member of the NSFNet Technical Advisory Group
in 1986 and is currently Spokesperson of MONARC and
Co-Spokesperson of the Particle Physics Data Grid Project.
His E-mail and web addresses are <newman@hep.
caltech.edu> and <http://l3www.cern.ch/
~newman>.

01

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

