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ABSTRACT

In this tutorial we present an introduction to simulation-
based optimization, which is, perhaps, the �hottest� topic in
discrete-event simulation today.  We give a precise
statement of the problem being addressed and also
experimental results for two commercial optimization
packages applied to a manufacturing example with seven
decision variables.

1 INTRODUCTION

One of the disadvantages of simulation historically is that it
was not an optimization technique.  An analyst would sim-
ulate a relatively small number of system configurations
and choose the one that appeared to the give the best
performance.  However, based on the availability of faster
PCs and improved heuristic optimization techniques
(genetic algorithms, simulated annealing, tabu search, etc.)
most discrete-event simulation software vendors have now
integrated optimization packages into their simulation
software or will do so in the very near future. It could
arguably be said that optimization is the �hottest� topic in
discrete-event simulation today.

The goal of an �optimization� package is to
orchestrate the simulation of a sequence of system
configurations [each configuration corresponds to
particular settings of the decision variables (factors)] so
that a system configuration is eventually obtained that
provides an optimal or near optimal solution.

In Section 2, we describe the problem that is being
addressed by simulation-based optimization.  Section 3
gives the results that were obtained from applying two
commercial optimization packages to a manufacturing
example with seven decision variables, and Section 4
provides a summary.  A detailed description of available
optimization packages, their vendors, and the heuristic
search procedures that they use may be found in Law and
Kelton (2000, Section 12.6).
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2 STATEMENT OF THE PROBLEM

Let V1, V2, �, Vk be decision variables (quantitative factors)
for a simulation model.  Let f(v1, v2, �, vk) be an output
random variable for the simulation model corresponding to
the set of values V1 =  v1, V2 = v2, �, Vk = vk .

2.1 Example 1

Consider the manufacturing system consisting of four work
stations and three buffers (queues) as shown in Figure 1.
Whenever a machine in work station 1 is idle, it will pull a
blank (new) part in from an infinite supply.  A machine
cannot discharge a part if the succeeding buffer is full.
Processing times have an exponential distribution with a
mean that is given in Table 1.  Let Vi (for i = 1, 2, �, 4) be
the number of machines in work station i and let Vi (for i =
5, 6, 7) be the number of buffer positions in buffer i � 3.
Then f(3, 2, 2, 3, 3, 1, 2) could, for example, be the number
of completed parts for a 30-day period for the
configuration shown in Figure 1.

Then the optimization problem of interest, in general,
is given by the following:

max E[f(v1, v2, �, vk)]
li ≤ vi ≤ ui

subject to the p linear constraints:

a11v1 + a12v2 + � + a1kvk ≤ c1

a21v1 + a22v2 + � + a2kvk ≤ c2
 .           .                  .           .                          (1)
 .           .                  .           .
 .           .                  .           .
ap1v1 + ap2v2 + � + apkvk ≤ cp

Thus, we want to maximize the objective function E[f(v1,
v2, �, vk)] [�E� means the expected value (or mean) of the
random variable f(v1, v2, �, vk)] over all possible values of
v1, v2, �, vk that satisfy that range constraints li ≤ vi ≤ ui
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Figure 1:  Mean Processing Times for Machines in the Four Work Stations

Table 1:  Manufacturing System Consisting of Four Work Stations and Three Buffers

Work station Mean processing time for a machine (in hours)

1 0.33333

2 0.50000

3 0.20000

4 0.25000
(for i = 1, 2, �, k) and the linear constraints given by (1).
Note that li and ui are lower and upper bounds for vi.  Also,
the aji�s and cj�s in the constraints (1) are constants.
Finally, �max� can be replaced by �min� in the objective
function.  In Example 1, a possible constraint might be

v1 + v2 + v3 + v4 ≤ 10

i.e., the total number of machines cannot exceed 10
In general, we will need to make n independent

replications of the simulation for system configuration v1,
v2, �, vk  and to use the sample mean over the n
replications,   (v1, v2, �, vk), as an estimate of E[f(v1,
v2, �, vk )], since f(v1, v2, �, vk) is a random variable.

3 A DETAILED EXAMPLE

In this section we apply the OptQuest (Glover et al. 1999)
(as implemented in Arena) and WITNESS Optimizer
(Lanner 1998) optimization packages to the manufacturing
system discussed in Example 1.  There are seven decision
variables and we assume that ui = 3 for  i = 1, 2, �, 4 and
ui = 10 for i = 5, 6, 7; li = 1 for all values of i.  Thus, there
are 81,000 = 34 ⋅ 103 different combinations of the decision
variables.  There are no linear constraints for this problem.

Let

n_ machines = the total number of machines in all
work stations

n_positions = the total number of positions in all
buffers

f
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throughput = the total number of parts produced in
a 30-day period of time

Then define the objective function random variable f
(profit) as follows:

f = ($200 ⋅ throughput) �
($25,000 ⋅ n_machines) � ($1000 ⋅ n_positions)

The simulation run length for our experiments was 720
hours (30 days) with an additional warmup period of 240
hours (10 days).  The throughput was computed from the
final 720 hours of each 960-hour replication.  We made n =
5 replications for each system configuration for each
optimization package.

For OptQuest (Glover et al. 1999), we used a stopping
rule that lets the optimization algorithm run until a user-
specified number of configurations (NC) has been
completed.  (An alternative stopping rule is to let the
optimization algorithm run until a user-specified amount of
wall-clock time has elapsed.)  Another parameter for
OptQuest is the population size (PS), which is the number
of system configurations that is simultaneously being
considered by the algorithm.  We considered two different
experiments for OptQuest: PS =10; NC = 100 and NC =
300.  (This value for PS is the smallest one available.)  We
performed each experiment five times using different
random numbers, with the average results being given in
Table 2.  The average profit is approximately the same for
the two different experiments.
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The stopping rule for the WITNESS Optimizer
(Lanner 1998) has two user-specified parameters: the
maximum number of configurations (MC) and the number
of configurations for which there is no improvement (CNI)
in the value of the objective function. For example,
suppose that MC = 500 and CNI = 25, and that the
objective function value at configuration i is the largest up
to that point.  Then the algorithm will terminate at
configuration i + 25 if the objective function values at
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configurations i + 1, i + 2, �, i +25 are all less than or
equal to the objective function value at configuration i;
however, the algorithm will never go beyond 500
configurations.  We considered two different experiments:
MC = 500; CNI = 25 and 75.  Each experiment was
performed five times using different random numbers, with
the average results being given in Table 3.  The average
profit is once again approximately the same for the two
different experiments.
Table 2:  Average Results (over the Five Realizations) for OptQuest (Version 1.0)
Parameters Configurations at

termination
Configurations at

best solution
Best objective function

value (profit)

NC = 100 100 59 $591,224

NC = 300 300 136 $596,536

Table 3:  Average Results (over the Five Realizations) for the WITNESS Optimizer (Version 2.0a)

Parameters Configurations at
termination

Configurations at
best solution

Best objective function
value (profit)

CNI = 25 77 56 $588,416

CNI = 75 147 93 $589,256
We have seen that the average profit is approximately
$590,000 in the four experiments that we considered.  One
might ask how close this is to the expected profit for the
optimal solution and, also, what is the optimal system
configuration?  Work station 2 is potentially the bottleneck
since its processing rate, 2 parts/hour, is the smallest of the
four work stations.  Therefore, we can argue heuristically
that station 2 should have 3 machines, which gives station
2 a potential overall processing rate of 6 parts/hour.  It
follows that station 3 should have 2 machines � if it had
only 1 (an overall processing rate of 5 parts/hour), then
station 3 would be the bottleneck.  (Three machines at
station 3 are clearly not necessary.)  By similar reasoning,
station 4 should also have 2 machines.  The question, then,
is how many machines do we need at station 1?  It might
seem that we need 2 machines at station 1, since its
maximum overall processing rate of 6 parts/hour would
equal the maximum processing rate of station 2.  However,
it turns out that 3 machines are preferable, since this results
in less idle time and a greater actual processing rate for
station 2.  The resulting additional profit more than
compensates for the cost of one more machine at station 1.

Thus, it would appear that 3, 3, 2, and 2 machines at
stations 1, 2, 3, and 4, respectively, are optimal.  This is
substantiated by the fact that the configuration 3, 3, 2, and
2 was selected in 20 out of the 20 experimental realizations
(five realizations for each of four experiments).

We therefore fixed the machines at 3, 3, 2, and 2 and
set out to determine the optimal number of buffer positions
for each of the three buffers.  We used the WITNESS
Optimizer for this purpose, since it has an option that
allows one to do an exhaustive enumeration of all possible
system configurations.  For each of the 1000 combinations
of the numbers of buffer positions, we made n = 50
independent replications of the simulation model � 50,000
replications were made in all.  (This experiment was
performed only once.)  We found that buffer configuration
7, 8, and 4 had an estimated profit of $591,588, which was
the largest for the 1000 possible configurations.
Furthermore, a 90 percent confidence for the expected
profit for this configuration was [$591,456, $591,721].
The buffer configuration 7, 7, and 4 was a close second
with an estimated profit of $591,512.  Therefore, the
optimal configuration should be close to 3, 3, 2, 2, 7, 8, and
4.  Note that the estimated profit for the configuration 2, 3,
2, 2, 7, 8, and 4 was only $548,488.

4 SUMMARY

We have tested two different optimization packages with
certain settings for their parameters on one sample
problem.  We found that their performance was good for
this problem and for the parameter settings used.  One
should definitely not infer from these results how these (or
other) optimization packages will perform on different
problems that might be considerably more difficult in
terms of the number of possible system configurations, the
shape of the response surface E[f(v1, v2, �, vk)], or the
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amount of inherent variability in the simulation model.  A
major concern at this time is how should one select an
optimization package�s parameters for a particular problem
of interest, since little guidance is given in this regard.  In
the actual conference presentation, we will give a much
more extensive set of experimental results, in terms of the
number of example problems and of the number the
optimization packages tested.  In particular, we will see
for some optimization packages that the choice of
parameter settings can have a big impact on the quality of
the solution obtained.

Simulation-based optimization is just in its infancy.
However, it appears that it will have a considerable impact
on the practice of simulation in the future, particularly
when computers become significantly faster.
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