
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

THE EXTEND SIMULATION ENVIRONMENT

David Krahl

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119, U.S.A.

ABSTRACT

The Extend modeling environment provides an integrated
structure for building simulation models and developing
new simulation tools. This environment supports
simulation modelers on a wide range of levels. Model
builders can use Extend�s pre-built modeling components
to quickly build and analyze systems without
programming. Simulation tool developers can use Extend�s
built-in, compiled language, ModL to develop new
modeling components. All of this is done within a single,
self-contained software program that does not require
external interfaces, compilers, or code generators.

1 INTRODUCTION

Over the last decade, there has been a convergence in the
simulation industry. Simulation languages have become
easier to use, often adding a user interface layer similar to
that traditionally found in simulators. Simulators have
added functionality to the point where their power and
flexibility rival that of traditional languages. Because of
this, it has become difficult for an individual to determine
the advantages of one product over the others based strictly
on a feature comparison.

In this confusing marketplace, Extend stands out as a
product whose basic design provides a combination of
unparalleled ease of use, power, and extensibility (Krahl
1999). It exists as:

� A stand-alone simulation tool which can be used to

create complex discrete event and continuous
models without programming.

� A simulation authoring package where model
interfaces can be easily created, without
programming, to enhance productivity and ease of
use.

� A development environment for building sets of
custom components. This programming

280
environment allows the modeler to create a simulator
for a specific industry.

2 EXTEND�S MODELING ENVIRONMENT

Before looking into how Extend can be used to build
models, it is helpful to understand the Extend modeling
environment (Imagine That, Inc. 1998)

Figure 1 illustrates the overall structure of an Extend
model. Blocks are pulled from libraries into the model. The
user then fills out the dialog of the block, and, if desired,
creates links to external applications. Blocks supply
behavior (or code), help, icon, dialog, and default data for
each step in a process. Each block in the Extend model
references this information from the library. Blocks on
model worksheets contain any data entered by the modeler
and links to external programs.

Extend models are constructed with library-based
iconic blocks. Each block describes a calculation or a step
in a process. Block dialogs are the mechanism for entering
model data and reporting block results. Blocks reside in
libraries. Each library represents a grouping of blocks with
similar characteristics such as Discrete Event, Plotter,
Electronics, or Business Process Reengineering. Blocks are
placed on the model worksheet by dragging them from the
library window onto the worksheet. The flow is then
established between the blocks.

There are two types of logical flows between the
Extend blocks. The first type of flow is that of �items�,
which represent the objects that move through the system.
Items can have attributes and priorities associated with
them. Examples of items include parts, patients, or a packet
of information. The second type of logical flow is �values�,
which will change over time during the simulation run.
Values represent a single number. Examples of values
include the number of items in queue, the result of a
random sample, and the level of fluid in a tank.

Krahl

External software
Input data

Simulation results
Behavior (code)

Drag blocks from
libraries into model

Model Worksheet

Libraries of blocks
Dialog

Behavior (code)
Help
Icon

Default data

Block dialogs
Input data

Simulation results

Figure 1: Extend Modeling Structure
Each block has connectors that are the interface points
of the block. Figure 2 shows the connector symbols for the
value and item connectors.

Item InputValue Input

Value Output Item Output
Figure 2: Value and Item Connectors

Connections are lines used to specify the logical flow
from one connector to another. Double lines represent item
connections and single lines represent value connections.
The concept of value connections in addition to item
connections is unique to Extend. Contemporary simulation
software requires that a function be written whenever a
simulation input is based on a value from another point in
the simulation. In Extend, this type of logic is performed
without programming of any type. More importantly, the
logic of the model is visible to anyone examining the
model structure.

Figure 1 illustrates the relationship between the
libraries, blocks, worksheet and any external programs
28

(such as Excel or a DLL) which may be linked to Extend.
It also shows the visual nature of an Extend model. Note
that the Input Random Number blocks can be clearly
identified as providing the delay (D connector) for the
activities.

3 SINGLE SERVER, SINGLE QUEUE EXAMPLE

The following example is of a single server, single queue
system. For the purpose of illustration, the model of a car
wash will include one wash bay and one waiting line. The
model for this car wash is shown in Figure 3.

Figure 3: A Single Server Single Queue Model

The block on the far left is a Generator block that
periodically creates items (in this case dirty cars).
Following this is a Queue, FIFO block that holds the cars
until requested by the next block. The wash bay is
represented by the Activity Delay which has a limited
1

Krahl
capacity of one processing unit and delays the car for a
fixed amount of time. The last block in the model is an Exit
block that removes the cars from the system.

Suppose that the processing time for the wash bay is
better represented by a specific random distribution. This
can be modeled by connecting the output of an Input
Random Number block to the delay connector (labeled
�D�) on the Activity Delay block as in Figure 4. Every
time a car enters the wash bay, a new processing time is
requested from the Input Random Number block. For each
request, the Input Random Number block generates a new
processing time from the specific random distribution
defined in the block�s dialog.

Figure 4: A Model with Random Process Times

3.1 Graphical Output

A Discrete Event Plotter graphically displays model
metrics (values). In this example (Figure 5), the Plotter will
graph the contents of the Queue (the number of dirty cars
waiting in line) over time. Here the length connector (L) on
the Queue FIFO is connected to an input on the Plotter.

Figure 5: Discrete Event Plotter Added to Model

3.2 Attributes

Assume that the car wash offers two types of washes, basic
and deluxe, and that the processing time is dependent upon
the type of wash requested. To differentiate between the
two different types of wash requests, attributes are used.
The Set Attribute Block adds an attribute called �type� to
each car. It randomly sets the value of this attribute to 0
(basic) or 1 (deluxe) using another Input Random Number
28

Block as shown in Figure 6. As the dirty cars leave the
queue and enter the wash bay, the Get Attribute block
reads the �type�. A Conversion Table block converts this
number to a value representing the mean processing time
for washes of that type. To generate the sample from a
normal distribution, the mean value can then be fed into the
Input Random Number block (Figure 6).

Figure 6: Setting �Type� Attribute

3.3 Resources

Because the activities in Extend already include an implied
resource (they have a capacity and items will wait for the
activity if it is occupied), resources are required only if the
same resource is used at multiple places in the model. In
order to effectively illustrate the use of resources in this
model, it is necessary to add the additional detail of
customers paying for the car wash and the process of
drying the cars. In this case, an attendant is required to
collect the money for the wash and to dry the car.
Additional blocks are added to represent these two
additional activities.

As shown in Figure 7, a Resource Pool block
represents the available attendants. The resource is
allocated to the item in the Queue, Resource Pool and
released in the Release Resource Pool. Another new block
in this example is the Activity Multiple. This block allows
multiple items to be delayed at the same time. Here, it
represents the drying of the cars because multiple cars can
be dried at a time.

Another new feature illustrated by this example is the
use of �named connections�. The labels �Wash� and �Dry�
are used to make connections rather than having long lines
appear across the model (Figure 7). This feature is essential
in large models where a large number of connected lines
would quickly become cumbersome.

3.4 Activity Based Costing

Now that there is a basic model of the car wash, the model
can be enhanced to calculate the average cost of washing
each car. The following information is available:

� Attendants are paid $8.50 an hour.
� Cars use $1.25 in soap
� Electricity and water used by the wash bay cost

$1.50 per minute.
2

Krahl

Figure 7: Modeling Resources

The cost of the attendant is defined within the
Resource Pool block and the cost of the soap, water, and
electricity in the Activity Delay block (Figure 8). As the
model is run, the accumulated cost of each vehicle is
automatically calculated and stored in an attribute. The
Cost By Item Block can be added to read the cost attribute,
sort the items by an attribute (such as the �type� attribute)
and report on the throughput, total cost, and average cost
by type of wash requested. The Cost Stats Block be added
to report the total cost generated in each of the blocks.

Figure 8: Cost Tab of Activity Delay Block

3.5 Communication with Other Applications

The term interprocess communication (IPC) describes the
act of two applications communicating and sharing data
with one another. This feature allows the integration of
external data and applications into and out of Extend
models. Automatic communication between Extend and
other applications can take one of three forms:

� �Paste-Link� where the information is automatically

updated between Extend and Excel. Setting up this
283
type of communication only requires copying the
value in one application (Extend or Excel) and
selecting paste-link in the other application. This
produces a �live� link that updates whenever the
value in the host application changes. These updates
even occur when the model is running and can be
used to display data or graphs in Excel that
�animate� while the simulation model is running.

� Blocks that utilize the IPC functions to communicate
directly with other applications. Imagine That�s IPC
library allows models to send data to, get data from,
and execute macros within other applications,
including Excel spreadsheets. These blocks can
respond to simulation events and traverse the
spreadsheet.

� ODBC (Open DataBase Connectivity). Extend can
access database information through ODBC. As
with all of Extend�s interprocess communication
features, this is available both on a block level
(accessible with no programming required) and on
an API level within Extend�s ModL programming
environment. Figure 9 illustrates the Database
import and export functionality of the Global Array
Manager block.

� Embedded objects (ActiveX or OLE). These retain
their native user interface, but reside with the Extend
model worksheet or blocks. All of the features and
the interface of the embedded application are
directly available within Extend. Figure 10 shows a
bar chart object from the GraphicsServer toolkit
embedded in an Extend block. This is part of the Bar
Chart block that graphs the level of an input value
during the simulation run.

Figure 9: ODBC Import/Export

Krahl

Figure 10: Embedded Bar Chart Object

3.6 Model Results

Once the simulation run has completed, the results of the
simulation are reported within the blocks, displayed on
plotters, sent to reports, and exported to other applications.
Double clicking on each block reveals the information
collected from the simulation run. For example, double
clicking on the Queue, FIFO block opens a dialog showing
the following information about the state of the block:

Figure 11: Dialog of Queue FIFO

The Plotter block shows the number of items stored in the
Queue, FIFO over time in both graphical and tabular format:

Figure 12: Plot of Queue Length
28

Simulation results may be stored in a table, plotted, cloned
to a different area of the worksheet, exported to another
program such as a spreadsheet or database, displayed in an
animation, or even used to control some aspect of the
outside world through external device drivers.

3.7 Data Analysis

Extend offers a number of methods for analyzing both
input and output data. These range from internal analysis
features to built-in interfaces with other applications.

An interface to distribution-fitting programs is
provided to aid users in selecting the appropriate statistical
distributions based on empirical data collected in the field.

In addition, sensitivity analysis can be performed to
determine how sensitive a system is to changes in specific
input parameters. For example: to determine how sensitive
the car wash is to changes in the inter-arrival time of dirty
cars, sensitivity analysis can be performed on the inter-
arrival mean parameter of the Generator Block. By
selecting the inter-arrival time dialog item and choosing
Sensitize Parameter from the Edit menu, the change in the
parameter value from one run to the next is defined.
Simulation parameters such as the number of runs and
simulation end time can be specified in the Simulation
Setup dialog under the Run menu. By cycling through
different inter-arrival times for the dirty cars and
comparing the results from the different runs, an
understanding of how sensitive the car wash is to the
arrival rate of dirty cars can be obtained.

The Statistics library helps users to collect and analyze
output data. Blocks from the Statistics library
automatically gather data from the appropriate blocks and
calculate confidence intervals.

3.8 Optimization

Until now, optimization of a simulation model has been a
process of trial and error. Extend�s Evolutionary Optimizer
block employs powerful �enhanced evolutionary�
algorithms to determine the best possible model
configuration. Using a drag and drop interface, parameters
that can be varied and pertinent results are entered into the
Optimizer block. These parameters are used in an equation
that defines the objective function. When the model is run,
the Optimizer block generates alternatives and locates the
statistically best configuration. Unlike external optimizers,
Extend�s optimization is well integrated into the program.
For example, when the optimization process is complete,
model parameters are automatically set to the optimal
configuration. In addition, because the optimizer has been
implemented in a block, the source code is available for
examination and modification.

4

Krahl
4 CUSTOMIZING EXTEND

The above discussion illustrates the highly graphical and
interactive nature of Extend. However, Extend can also
take the shape of the modeled system. Interfaces,
components, and graphics can be created which tailor the
model to a specific application area.

The most visible aspect of a custom model is the user
interface. By modifying an existing interface or creating a
new one, the simulation modeler is able to create a model
which can be exercised by someone more familiar with the
system than with the simulation tool. Models can be built
that fit naturally into the conceptual framework of the
person using the model. The following sections will
describe some of the tools provided in Extend that facilitate
customization.

4.1 Animation

Animation is a powerful presentation and debugging tool
that can greatly increase model clarity. In Extend,
animation icons moving from block to block represent the
flow of items through the system. Users can choose from a
number of icons provided with Extend or create their own
in an external drawing package.

For example, adding animation to show cars traveling
from block to block in the car wash model is done by
selecting the appropriate icon in the Animate tab of the
Generator block. From here, the picture representing all of
the items created by the Generator is defined. Each block
that the items pass through has the capability of changing
the item�s animation icon. For example, every item exiting
the Generator block can be represented with a picture of a
dirty car. As the items pass through the wash bay, the
Activity Delay block changes each item�s animation
picture to a clean car, providing visual cues of how the
items are changing as they progress through the model.

In addition, custom animation can be added to display
pictures and text, level indicators, and pixel maps.

An interface also exists between Wolverine Software�s
animation package, Proof Animation. Activities,
Resources, Generators, and Exit blocks each have specific
functionality to send information to the Proof animation
during simulation execution (Wolverine Software
Corporation 1995). Additional animation features in Proof
can be accessed in Extend through the Proof library of
blocks. This allows Extend modelers to easily utilize the
industry�s most sophisticated animation package.

4.2 Hierarchical Modeling

Extend provides unlimited layers of hierarchy, created
using simple menu command. Hierarchy allows models to
be subdivided into logical components or sub-models,
represented by a single descriptive icon. Double clicking
2

on the hierarchical block opens a new window displaying
the sub-model. This greatly simplifies the representation of
a model and allows the user to hide and show model details
as appropriate for the target audience.

In the car wash model (Figure 7), as detail was added,
the number of blocks increased. As a result, the
representation of the model has become slightly
encumbered.

Using hierarchy, the model can be represented by the
system�s most basic elements (Figure 13):

� the arrival of dirty cars
� the queue of dirty cars waiting for availability of the

wash bay
� the wash bay
� the departure of clean cars.

By selecting a group of blocks and choosing Make

Selection Hierarchical from the Model menu, a section of
the model can be encapsulated within a hierarchical block.
Extend�s hierarchy fully encapsulates the enclosed block
and does not require the renaming of variables and
connections. All of the connection names within the
hierarchical block. This allows multiple instances of
identical hierarchical blocks in the same model (Pidd and
Castro 1998). The hierarchical blocks can be copied within
a model or saved to a library to be used again in other
models. The icon for the hierarchical block can be
modified by using the built-in icon editor or by importing
an existing picture. Figure 13 shows the car wash model
with hierarchical blocks representing some of the basic
elements of the car wash. While the representation of the
model is more intuitive and simple than Figure 7, all of the
detail of the model can still be accessed by double clicking
on any of the hierarchical blocks to display the underlying
sub-model.

Figure 13: Car Wash Model with Hierarchical Blocks

4.3 Dialog Cloning and the Notebook

As noted in the previous section, input and output
parameters associated with the model can be found in the
dialogs of the appropriate blocks. While this provides an
intuitive association between system metrics and the
constructs used to model them, it can make searching for
specific data cumbersome. This is especially true when
working with large models containing many layers of
hierarchy. An effective way of dealing with this is to use
the Extend notebook and cloning feature. With the
85

Krahl
notebook, a single custom interface can be created that
consolidates critical parameters, results, and model control
to a central location.

The notebook is a separate window associated with
each model. Initially, the notebook is a blank worksheet to
which text, pictures, and clones can be added. Clones are
direct links to dialog parameters and are created by
selecting the Cloning Tool from the tool bar and using it to
drag a dialog parameter from a block dialog to the
notebook or model worksheet. Once a clone is created, any
changes to the clone are immediately reflected in the block
and vice-versa. Therefore, it is no longer necessary to
access the block�s dialog to change an input parameter or
view updated results. Creative use of the notebook can
result in a simple yet effective interface for a large,
complex model. As an illustration of how the notebook can
be used to consolidate important parameters into one
location, Figure 14 shows the notebook for the car wash
model.

Figure 14: Notebook for Car Wash Model

4.4 Block Development

The block development environment is one of Extend�s
most powerful features. While the majority of Extend users
find the pre-built constructs sufficient for their needs, the
block development environment provides a way for users
to expand the modeling capabilities to perform unusual or
highly specialized tasks. Extend�s environment is easily
accessible to even novice programmers. It typically takes
only minutes for a programmer to learn the basics of
building modeling components in Extend.

Extend�s open source architecture allows access to the
structure of any block that is shipped with Extend. By
opening the structure, the icon, dialog, help text, and
programming code of the block can be edited. The
interface and functionality of any block can be modified or
a new block created from scratch.
2

ModL is the powerful and flexible language used to

define the behavior of each block. This language provides
high-level functions and features while having a familiar
look and feel for users with experience programming in C.
In addition, external XCMDs and DLLs can be called from
within ModL, giving the option of programming in any
language which supports this feature (such as C or Pascal).

The ModL development environment with its interface
for editing the dialog, help, icons, connectors, and code, is
illustrated in Figure 15. Other tools include block
performance profiling, included program files, and an
interactive debugger.

Figure 15: ModL Block Development Environment

This level of extensibility has prompted many users to
develop libraries of custom blocks for specific industries.
Users and third-party developers have created libraries for
modeling many systems including neural networks, control
systems, high-speed systems, chemical processes, silicon
wafer fabrication, pulp and paper mills, and radio and
microwave communication systems. Some blocks coded by
customers can be found on Imagine That�s web site
(<http://www.imaginethatinc.com>).

4.5 Scripting

Since Extend was created from the ground up as a
graphical simulation tool, much of the process of defining
a model was originally dependent on user interaction. For
example, the user places blocks on the model worksheet,
connects blocks together by drawing a connection between
them, defines the block�s behavior by double-clicking the
block to open its dialog and filling the appropriate
parameters, etc.

Scripting is a feature that allows models to be created
and/or modified through a suite of ModL functions. With
this functionality, users can create objects that
automatically build and modify models. With scripting,
users can develop their own model building �wizards� or
86

Krahl

self-modifying models. Without having to rely on general-
purpose �wizards� provided by the software vendor, users
can develop �wizards� specific to their needs and can have
complete control over the level of detail and accuracy
resulting from automated model building.

Coupled with Extend�s ability to communicate with
other applications using interprocess communication (IPC),
scripting provides an easy way to allow other applications
to control every aspect of Extend, including building the
model, importing/exporting data, and running the
simulation.

Figure 16 shows a Visual Basic application or
�wizard� which builds an Extend model based on the
information entered in a series of forms.

Figure 16: Visual Basic �Wizard� Building a Model

5 DISCRETE EVENT ARCHITECTURE

Extend utilizes a message-based architecture which allows
for more natural model building than is possible in other
simulation tools. Messages are used to pass information to
connected blocks about the state and actions of the block
sending the messages. For example, as soon as a queue
receives an item it will send a �wants� message to the
downstream blocks to see if any of them can accept an item.
The messaging system is applied to the item as well as the
value connectors. Because of this, complex models and logic
can be built without resorting to �dummy� resources,
�logical� workstations, or programming that is reusable.

5.1 Modeling Enhancements

A more advanced architecture makes modeling easier. In
using a modern, message-based system Extend allows the
modeler to focus on the modeling task rather than the
simulation tool.

� Complex model segments can be built from simple,
elemental blocks. These segments can then be saved
in a library for use in other models. This type of
model construction eliminates the need for �kitchen
sink� modeling components in which every possible
permutation must be programmed by the developer
287
(making the interface unnecessarily complex) or
requiring programming to enhance the capabilities of
the modeling component.

� Easier rescheduling of events. Because blocks, not
items (entities), are entered into the event calendar,
changing an event time is a simple assignment. In
other simulation tools, the event calendar must be
searched for a specific item before the change can be
made.

� Events do not have to be item based. Blocks can post
themselves on the event calendar even if they do not
handle items. This reduces the overhead in the model
because items do not have to be generated or
processed when an event occurs.

� Blocking through decisions. Extend automatically
determines which path an item takes before it arrives
at the decision point. The alternative to this would be
adding �dummy� resources to prevent the item from
moving forward if space was not available.

� Queues can be separated from activities. Any
number of blocks that do not hold items (passing
blocks) can be between a queue and the next activity.

� Conditions do not need to be �time checked�.
Messages are sent to connected blocks whenever a
condition changes and the condition is evaluated
immediately.

� Model logic is represented graphically and is visible
as part of the model structure.

6 WHAT MAKES EXTEND UNIQUE

Extend provides features and capabilities not found in
other simulation software. This allows the modeler to
concentrate on the modeling process and quickly produce a
model that is easy to manipulate and communicate to
others. These features include:

� An integrated development environment for building
modeling components which fit naturally into the
user interface.

� Graphical logic making the model easier to
understand and communicate.

� An unparalleled level of interactivity. Model
parameters can be changed and results viewed
during simulation execution. This is done through
the graphical user interface; there is no need to enter
a debugging mode or enter cryptic debugging
commands.

� Superior hierarchy. Extend�s hierarchy allows for
animation and reuse, and can be any number of
levels deep. This gives modelers an excellent tool for
organizing large models and reusing model
segments in other models.

� An innovative discrete event architecture which
makes model building more intuitive.

Krahl

7 APPLICATIONS

Since Extend is a general purpose simulation program, it
has been applied in a wide range of areas. The sample of
application examples included here are supply chain, high
speed manufacturing, and chemical processing.

7.1 Supply Chain

The US Marine Corps is undergoing a revolution in the
way they conduct combat operations. There are many ideas
regarding how the tactical supply chain must change to
provide the necessary logistical support.

Figure 17: Supply Chain Model

The TLoaDS model (Figure 17) has been developed to
explore the ability of existing, evolutionary, or
revolutionary methods and equipment for this challenging
mission. This application has been described as
�warehouses that move�, referring to the changing location
of supply ships and depots (Hamber 1999).

7.2 High Speed Processing

This is a model of a packaging line that takes bulk material
(cookies) in pounds, packages the material in bags,
packages bags into cartons, and then cartons into cases.
The model is used to understand the dynamics and capacity
of the overall system. This model shows the effect of
changing the speed of a piece of equipment, the failure and
repair rates for that piece of equipment, the size of in-line
storage, or even the mixing of different products.
28

Figure 18: High Speed Processing

This example was built using the Simulation
Dynamics� �SDI Industry� product which utilizes the
Extend simulation engine.

7.3 Pulp and Paper Processing

This model represents an integrated pulp and paper facility
in New Zealand�s central North Island.

The model is a steady state representation of an
integrated pulp mill, recycle facility, and sack kraft
machine. It allows the engineers to perform �what ifs� to
determine the optimum mix of products and grades for
specific economic conditions. It is also capable of material
and energy balances. Without a tool such as a model, these
types of highly flexible operations, with hundreds of
permutations and combinations, are difficult to optimize.

This mill now boasts bleached softwood kraft
production costs in the bottom quartile worldwide.

This application was built in Simons Technologies,
Inc. �IDEAS� simulation software which is based on the
Extend simulation engine.

Figure 19: Pulp and Paper Processing
8

Krahl

8 SUMMARY

As demonstrated above, Extend�s design provides a
superior simulation environment. By incorporating an
intuitive interface, an extensive authoring and development
environment, and a more advanced simulation technology,
Extend has succeeded in defining its position as the leader
in simulation software.

REFERENCES

Hamber, Robert. 1999. CloaDS & TloaDS. 1999

Simulation Solutions Conference. Institute of
Industrial Engineers, Norcross, GA

Imagine That, Inc. 1998. Extend Software Manual. San
Jose, CA.

Pidd, M and Castro, R. Bayer 1998. Hierarchical Modeling
in Discrete Simulation. In Proceedings of the 1998
Winter Simulation Conference Proceedings, ed. D. J
Medeiros, E. F. Johnson, J. S. Carson, M. S.
Manivannan, 383-389. IEEE, Piscataway, NJ

Krahl, Dave. 1999. Modeling with Extend. In Proceedings
of the1999 Winter Simulation Conference
Proceedings, ed. P. A. Farrington, H. B. Nembhard, D.
T. Sturrock, and G. W. Evans, 188-195. IEEE,
Piscataway, NJ.

Wolverine Software Corporation. 1995. Using Proof
Animation. Annandale, VA

AUTHOR BIOGRAPHY

DAVID KRAHL, Lead Engineer with Imagine That, Inc.,
is responsible for block development and technical support.
He received a MS in Project and Systems Management in
1996 from Golden Gate University and a BS in Industrial
Engineering from the Rochester Institute of Technology in
1986. Mr. Krahl has worked extensively with a range of
simulation programs and is actively involved in the
simulation community. His email and web addresses are
<davek@imaginethatinc.com> and <www.
imaginethatinc.com>.

289

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

