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ABSTRACT 2, ..., k; for example, sojourn time of job ¢ on day i. To

‘Trace-driven’ or ‘correlated inspection’ simulation means
that the simulated and the real systems have some common
inputs (say, arrival times) so the two systems’ outputs are
cross-correlated. To validate such simulation models, this
paper formulates six validation statistics, which are inspired
by practice and statistical analysis; for example, the simplest
statistic is the difference between the average simulated and
real responses. To evaluate these validation statistics, the
paper develops novel types of bootstrapping based on
subruns. Three basic bootstrap procedures are devised,
depending on the number of simulation replicates: one, two,
or more replicates. Moreover, for the case of more than two
replicates the paper considers conditional versus
unconditional resampling. These six validation statistics and
four bootstrap procedures are evaluated in extensive Monte
Carlo experiments with single-server queueing systems. The
main conclusion is that bootstrapping of the simplest
validation statistic gives the correct type I error probability,
and has relatively high power.

1 INTRODUCTION

Validation has many aspects; for a recent review and
references see Kleijnen (1999). In this paper, however, we
limit ourselves to statistical testing of the validity of trace-
driven simulations.

Consider the following ‘trace-driven’ simulation; also
see Table 1. The simulated and the real systems have some
common inputs (say) 4; for example, the same historical
sequence of arrival times (we use capital letters for random
variables, lower-case letters for realized values, and bold
letters for matrices including vectors). The real system
generates a time series of outputs W, whereas the

simulation generates outputs V, , withi=1,..,nand t=1,
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evaluate the real system, its manager characterizes the output
time series by a single performance measure (response) X;;
for example, average sojourn time on day i. To validate the
simulation statistically, this real performance X is compared
with the simulated performance (say) Y - for the same
situation (same circumstances, same scenario) characterized
by the trace A. But ~ow should we compare X and Y?

Some solutions are presented in Moors and Strijbosch
(1998), but we focus on Kleijnen, Bettonvil, and Van
Groenendaal (1998), abbreviated here to KLEIJ. Like KLEIJ
we assume that all simulation responses Y are identically and
independently distributed (i.i.d.). More specifically, each
subrun starts in the empty state, and stops after a fixed
number k of jobs. The real responses X are also i.i.d. Unlike
KLELJ we do not assume that (X;, Y,) are bivariate normal.
Indeed, in case of short subruns (say, £ = 10) the responses
are seriously nonnormal. This nonnormality - together with
a small n (number of subruns) - is not well handled by
conventional non-bootstrap techniques. (Obviously, ‘trace-
driven’ simulation implies that the two members of the pair
(X;, Y,) are cross-correlated.)

We suppose that the simulation model has at least one
more input variable (e.g., service time) not recorded on the
trace, so this input is sampled using a pseudorandom number
stream R. There are s simulation replications (using the same
trace A,), which yield Yl.(r) with r =1, ..., s. We distinguish
three cases for s, namely 1, 2, or more - namely, five or ten.

To solve this problem, we use bootstrapping, which in
general samples - randomly with replacement - i.i.d.
observations; see the seminal book on bootstrapping (outside
simulation), Efron and Tibshirani (1993), here abbreviated to
EFRON. (Other monographs on bootstrapping are Davison
and Hinkley (19 ), Mooney and Duval (1993), and Shao and
Tu (1995).)
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Table 1: Trace-driven Simulation

Subrun number i

Trace: A, . A . A

Real performance: X, ..X .. X,

Simulated performance:

renli 1) M M
plicate 1 P ARID ARG A

replicate r VALIND AL

replicate s Y, 1(S) in(s) . Yn(s)

We wish to test the hypothesis that the simulation model
is valid. For hypothesis testing through bootstrapping outside
simulation we refer to EFRON and also Shao and Tu (1995,
pp- 176, 189). Our main discovery will be: one simulation
replicate is certainly a valid model for another simulation
replicate. So if s > 2 we can obtain the bootstrap distribution
of any validation statistic under the null-hypothesis of a valid
trace-driven simulation model!

Note that - instead of generating responses through
bootstrapping - we may generate more simulation responses.
In practice, however, replicating a simulation generally
requires much more computer time than bootstrapping a
simulation. We assume that the number of simulation
replicates (symbol s) is given, and is small compared with the
bootstrap sample size b. (Breiman 1992, p. 750 also
discusses bootstrapping versus replicating, but not in a
simulation context.)

To provide some background of our research, we now
summarize the literature on bootstrapping in simulation.
Friedman and Friedman (1995) provide two academic
examples. Kim, Willemain, Haddock, and Runger (1993)
formulate their so-called ‘threshold’ bootstrap for the
analysis of autocorrelated simulation outputs. Several authors
investigate bootstrapping of empirical input distributions in
simulation: Barton and Schruben (1993), Cheng (1995),
Cheng and Holland (1997), and Pritsker (1998).
Bootstrapping for validation of metamodels is done by
Kleijnen, Feelders, and Cheng (1998). A summary of the
present paper is Kleijnen, Cheng, and Bettonvil (2000).

Our main conclusion will be: if a trace-driven simulation
model is run more than twice (s > 2), then bootstrapping any
statistic gives acceptable (albeit conservative) type I error
probability; the simplest statistic (the average deviation) has
good power compared with the more complicated statistics.

The remainder of this article is organized as follows. §2
summarizes KLEIJ’s F-statistic based on regression analysis,
and proposes five more validation statistics. §3 recapitulates
EFRON’s bootstrapping of time series; EFRON uses
‘blocks’, which we interpret as terminating subruns. §4
derives three bootstrap procedures for trace-driven
simulations, using one, two, or more than two simulation
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replications per subrun; moreover, in case of more than two
replicates the resampling may be either conditional or
unconditional. To evaluate these six validation statistics and
four bootstrap techniques, §5 designs a Monte Carlo experi-
ment with queueing models that generate 'real' and simulated
sojourn times. §6 interprets the results of this extensive
Monte Carlo experiment. §7 presents conclusions and topics
for future research.

2 SIXTESTS FOR VALIDATION

The bootstrap enables estimating the distribution of any
statistic, provided the statistic is a continuous function of the
observations (e.g., the median is not a continuous function).
For the validation of trace-driven simulations we investigate
six statistics, denoted as 7, through 7.

KLEIJ calls a simulation model valid if the real and the

simulated systems have (i) identical means (say) p_= M,

and (ii) identical variances c§= Gi. To test this composite

hypothesis, KLEIJ computes the differences D, = X, -Y,
and the sums Q, = X, + Y,, and regresses D on Q:
EMD |0 =¢q) =v, +v,9- The null-hypothesis then

becomes Hy: vy, = 0 and y, = 0. To test this H,, KLEILJ
computes the two Sums of Squared Errors or SSEs that
correspond with the ‘full’ and the ‘reduced’ regression
model:  SSE,, = Y (D, - D)* with D, = C, + C,0,
where C; and C, are the Ordinary Least Squares (OLS)
estimators of v, and y,;and SSE = Z Diz. These two

reduced

SSEs give the first validation statistic:

reduced

T
! SSE,/(n - 2)

IS = SSEwI2 )

If X, and Yl are n.i.i.d. (see §1), the statistic in Equation (1)
has an F-distribution with 2 and » - 2 degrees of freedom
(d.f.). If this statistic is significantly high, then KLEIJ con-
cludes that the simulation model is not valid.

We propose another validation statistic with intuitive
appeal to simulation practitioners, namely the average
absolute prediction error, T, = Y, | D,|/n (also see Kleijnen
and Sargent, 1999).

A third statistic related to the two preceding statistics is
the mean squared deviation (MSE), T, = E Dl.z/n.

_ A fourth statistic is the average deviation, T, = y Dy/n
= X - Y. A disadvantage of this statistic is that positive
model errors may compensate negative errors, and vice versa.
(This phenomenon may be ignored if a wrong simulation
model always underestimates - or always overestimates - the
real response whatever the trace is; moreover, this statistic
allows bootstrapping in case of a single simulation run; see

§4.1))
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The next statistic is the average relative error, Ty =
Z (Y/X))/n, which is often used in practice. Obviously this
statistic assumes that no X; is zero; actually, the event X, =
0 may occur with non-negligible probability in queueing
applications with empty starting states, no excessively
saturated traffic rates, and short subruns (see §6).

Finally, 7, compares Fx and F , the estimated
distribution function (EDF) computed from the n

observations on X and Y respectively:

T, = f [F(2) - G(2)|dz . ©)

Note that in Equation (2) we use the L, norm, notthe L,
or the L norms. KLEIJ’s statistic 7, also tests equality of
variances, whereas T, through 7 consider only equality of
means. More criteria or measures for model selection are
examined in detail in the monograph by Linhart and Zucchini
(1986).

3 EFRON’s BOOTSTRAP FOR TIME SERIES

EFRON (p. 91) assumes a sample of ni.i.d. observations Z,
withi=1, ..., n. (Hence, in our case we define Z= (X, Y); see
§1.) EFRON summarizes the sample data through a statistic 7
=8(Z,.., Z ). (Inourcase: T, = S.(Z,, ..., Z,)withj=
n AN n
1, ..., 6.) Bootstrapping means that the original values z, are
randomly resampled with replacement, » times. So, if the
superscript * indicates bootstrapping, then the bootstrap
observations are Z; .

This bootstrap sample gives one observation on the
bootstrap statistic 7" = s(Z f, s Z ;) To estimate the
distribution of this statistic, the whole bootstrap procedure is
repeated b times. Sorting these b observations on 7~ gives
the order statistics T(I), T (Z), and the estimated o quantile
of its distribution, 7. This procedure gives a two-sided
1- a confidence interval for the original statistic 7, ranging
from the lower estimated a/2 quantile to the upper 1 - a/2
quantile. (Alternative confidence intervals are discussed in
EFRON and Shao and Tu 1995). This interval can be used
for hypothesis testing, as we shall see; also see EFRON (p.
169).

We saw that this bootstrap assumes i.i.d. sample
observations Z;, but EFRON (pp. 99-102) also presents a
bootstrap for time series, called ‘moving blocks’ (also see
Shao and Tu 1995, pp. 387-392, 407-415). In our simulation
context we interpret these ‘blocks’ as subruns. So we have n
non-overlapping subruns, each starting in the empty state and
each of length k; we do not eliminate the transient phase. We
shall elaborate our approach in the next section.
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4 BOOTSTRAP OF VALIDATION TESTS IN
TRACE-DRIVEN SIMULATION

We assume a ‘reasonable’ number of i.i.d. subruns; more
specifically, we use the same numbers as KLEIJ (p. 815): n
is either 10 or 25. We distinguish three situations for the
number of simulation runs, for which we develop different
bootstrapping techniques: s is 1, 2, or more.

4.1 A Single Simulation Run: s =1

By assumption, the n pairs (X, Y,) are mutually independent
(as the n subruns are assumed independent). Moreover, these
pairs are identically distributed if we do not condition on the
trace variable A;; we assumed the latter variable to be i.i.d.
So we bootstrap the n original pairs, which gives the n
bootstrap pairs (Xl.*, Yl* ). These bootstrap pairs result in the
bootstrap validation statistics 7, through T, , albeit not
necessarily under the null-hypothesis of a valid trace-driven
simulation model.

We repeat this bootstrapping b times, to obtain an
estimated 1 - o confidence interval for each validation
statistic. We have an intuitive farget or hypothesized value
for 7, (= E D/n), namely zero. The two-sided confidence
interval ranges from the lower a /2 quantile to the upper 1 -
o. /2 quantile of the bootstrap distribution. If the confidence
interval does no cover this target value, then we reject the
simulation model.

We follow a similar approach for T (= E (Y/X,)/n),but
now with a target value of one.

We have no target values for the other four statistics.
However, we may compare the first statistic, with the
tabulated 1 - a quantile of the F-statistic with 2 and » - 2
degrees of freedom, F. 21 5 (no bootstrapping). Moreover,
for this statistic we first apply the normalizing logarithmic
transformation: replace x by log(x) and y by log(y) provided x;
and y;are not zero (also see KLELJ).

4.2 Only Two Simulation Replicates: s = 2

When s =2 we bootstrap the two replicates of the simulation
model: we replace the pair (X,, Y,) by ( Yl.(l), Y,.(Z)) This
yields a bootstrap confidence interval per statistic T , under
the null-hypothesis of a valid trace-driven simulation model.

We also have two observations on each original
validation statistic under the alternative hypothesis, namely
T = s((X, Y\), .\ (X, Y)) withr=1,2. We reject the
simulation model if any of these two observations on 7 falls
outside the 1 - a/2 bootstrap confidence interval: we use o/2
instead of a because of Bonferroni’s inequality (obviously
we may also replace ‘any’ by ‘the maximum?’).
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4.3 More than Two Simulation Replicates: s > 2

When s > 2 we proceed similarly to the case s = 2. However,
we now distinguish two approaches: (a) condition on the
trace; (b) do not condition on the trace.

(a) Conditioning: From each column i of Table 1 we
sample two observations ¥\ and Y Owith r = '
(in the original sample the probablllty of apair with
identical values is zero in case of continuous X and
Y, so we require 7 # r'). From these n bootstrap
pairs we compute the validation statistic 7. After
b repetitions we compute a 1 - o confidence interval
for this 7", as in the case s = 2.

(b) No conditioning: This approach assumes that the
traced variables A, are i.i.d. So now we resample
n pairs from the whole table. More precisely, first
we sample one value from the sxn values of Y; next
we sample without replacement a second value from
the remaining sn - 1 values, giving one bootstrap
pair; the next pair is sampled after replacing the
preceding pair, etc.

Let us compare approaches (a) and (b), focusing on the
simplest validation statistic 7,. Then we see that the
expected values of all differences between replicated
simulation responses are zero, in both approaches. Their
variances, however, are smaller in approach (a): blocking is
a well-known variance reduction technique in the design of
experiments. So we expect conditional resampling to yield
more powerful tests (this will turn out to be true: see §6).

Analogous to the s =2 case, we again compare one real
response X; with each of the s simulated responses Y . We
reject the 51mu1at10n model if any of these s Values falls
outside the 1 - a/s confidence interval (Bonferroni).

4.4 Asymptotic Results: Large n

In the Appendix we derive asymptotic results for the simplest
bootstrap validation statistic 7, (this statistic will turn out to
have the greatest practical relevance; see §6). We can prove
that as n tends to infinity, the EDF of 7, tends uniformly to
the EDF of the original statistic 7, for all four bootstrap
methods defined in §4.1 through §4.3. This uniform
convergence is important if confidence intervals with the
correct coverage are to be constructed. Of course, this
convergence is only asymptotic; our Monte Carlo
experiments in §6 estimate small-sample performance.

4.5 Minimal Bootstrap Sample Size

A classic value for b is 1,000; see EFRON (p.275), Andrews
and Buchinsky (1996), and also Barton and Schruben (1993)
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and Shao and Tu (1995, pp. 206-210). We shall use this
classic value, but also a much smaller value.

Actually, we are not interested in the whole distribution
function (say) g of the bootstrapped statistic 7", but only in
its a/2 and 1 - /2 quantiles (we reject the null-hypothesis if
the value of the original statistic 7" does not fall between
these two quantiles). To estimate this distribution function g,
we sort the Iz observations on T *, which gives T, (1> -+ T(Z)
Hence, g(7(;)), -

o(T ,)) . g( (b)) is an ordered sample from a )
uniform distribution on [0, 1). The expected value of g(77;)
is i/(b + 1). Consequently, if we take the minimal bootstrap
sample size, then our estimator of the lower o/2 quantile is
the smallest order statistic, namely 7, (1) Likewise the largest
order statistic T (» estimates the upper 1 - a/2 quantile. It is
easy to prove that the minimum value for b is

= (2/0) - 1. (3)

For example, o = 0.1 gives b = 19; we shall use this value
(besides the classic value of 1,000; see §5).

However, when we have more than one simulation
replicate (s > 1), then we apply Bonferroni’s inequality soa
is replaced by a/s. For example, for a = 0.1 and s =10
Equation (3) gives 199 (still much smaller than 1,000).
Actually, we shall report on b =19 even when s > 1: we then
avoid Bonferroni’s inequality by randomly selecting a single
value from the s values for the validation statistic computed
from the original (non-bootstrapped) observations on X; and
Y . We reject the simulation model if this one value lies
0uts1de the bootstrap confidence interval.

5 DESIGN OF QEUEING EXPERIMENTS

For the type I error rate of the validation tests we use an a of
0.01, 0.05, and 0.10 respectively. These values determine
which quantiles of the bootstrap distribution should be used
as thresholds. (Of course, the higher a is, the higher the
power is.) We focus on o = 0.10 because it gives the
smallest relative variance for our Monte Carlo results (see
§6); besides, this value is the only one that we can use for b
=19.

Following KLEIJ, we start with M/M/1 simulation mod-
els, which generate 'real' and simulated individual sojourn
times W and V. So these models have Poisson arrival and
service parameters (say) A, = 1/u, and A, = 1/p_where p
and p_denote the means of the interarrival and service times.
We use a tilde to denote a parameter of the simulation model;
for example, 71“‘ refers to the simulation model, whereas A

denotes the ‘real’ parameter.
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To study the type I error of the validation tests, we use
a simulation model and a real system with equal service rates
(arrival times are on the trace, so simulated and real arrival
times are the same); hence simulated and real traffic rates are
the same: p = p. We use an imperfect simulation model: the
‘real’ and the simulated service times use different
pseudorandom numbers.

We examine the following three factors - following
KLELJ (p. 815) - in a 2° design: (i) number of jobs per
subrun, £: 10 and 1,000 (affects the degree of nonnormality);
(i1) number of subruns, #: 10 and 25 (affects the convergence
of the bootstrap distribution); (iii) real traffic load, p : 0.5 and
1.0 (affects the cross-correlation caused by the common
trace).

To study the type I error, we use unequal simulated and
real rates. For real load p = 0.5 and number of jobs per
subrun £ = 1,000 we use p = 0.46, 0.48, 0.52, and 0.54; for
k=10we use 0.3,0.4, 0.6, and 0.7. For p =1 and k= 1,000
we use 0.96, 0.98,1.02, and 1.04; for k=10 we use 0.8, 0.9,
1.2, and 1.4. (For more extreme values of p the estimated
power reaches 1.)

Still following KLEIJ (p. 815), we use 1,000 macro-
replications; by definition, each macro-replication either
rejects or accepts a specific simulation model. (Each macro-
replication requires b bootstraps; each bootstrap requires kn
observations on the real and the simulated individual
outputs.) Because we use many pseudorandom numbers, we
select our generator with some care: we use a generator
proposed by L’Ecuyer (1999), called MRG32k3a with a
cycle length of the order 2''. We select seeds randomly.

All six validation tests use the same data (X, Yl.(r)),

which improves the comparison of these tests. The three
values for a also give positively correlated results.

To obtain more general results, we extend KLEIJ: we
also use M/G/1 simulation models where we let G stand for
service times with a gamma distribution. (Cheng 1998 gives
generators for this distribution family; the exponential
distribution belongs to this family.) The real system remains
M/M/1. We limit the design to a single combination of the
three factors: traffic load 1.0, number of jobs per subrun
1,000, number of subruns 10.

Finally, we extend our Monte Carlo study to simulations
with other priority rules, namely shortest processing time
(SPT) and longest processing time (LPT). We use the same
factor combination as for M/G/1.

6 MONTE CARLO RESULTS
Our Monte Carlo experiments with various single-server

queues result in estimated type I and II error probabilities of
our six validation statistics for five bootstrap procedures.
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If this type I error probability equals the prespecified
(nominal) value a, we call the validation test acceptable:

Hy EA) = o 4)

where A denotes the Monte Carlo estimator of that
probability - with values a. If no statistic satisfies this
condition, we accept a conservative validation procedure
(Bonferroni’s inequality implies such conservatism): in
Equation (4) we replace = by <.

Given Equation (4), this error probability has a binomial
distribution with variance a( 1 - a)/1000 (we have 1,000
macro-replications). For example, o = 0.10 gives a standard
deviation of 0.0095. We use the normal approximation’s
factor 1.96 (95% confidence interval) to test the significance
of the deviation between observed and nominal type I error
probability: we reject H if |6 - a| >0.0186. In case of a
conservative, one-sided test we accept an 6 smaller than
0.1156; see the results printed in bold in the tables below.
(There is no need for multiple comparisons or joint
inferences, which might use Bonferroni.)

If several statistics have acceptable type I error
probabilities, then we compare their estimated type II error
probabilities (power complement).

How to interpret the massive amount of data generated
by our Monte Carlo experiments? We think that the primary
user question is: which validation statistic should be used,
given that it is known how many simulation replicates are
available? Remember that when s = 1 we should bootstrap
only those two statistics that have intuitive target values,
namely 7, and 7 (for 7|, we use the F table).

The answer may also depend on other known
characteristics of the given simulation, namely the number of
1.1.d. subruns, 7.

If the simulation represents a queueing system, then
another known characteristic might be the number of
customers per subrun (k), the traffic load (p), and the
queueing discipline (FIFO, LPT, etc.). Some queueing
simulations, however, may be much more complicated than
the single-server systems that we study, so these
characteristics are of secondary interest.

We start our analysis of all these Monte Carlo results by
studying @ (type I error). Though we have 2° combinations
of p, k, and n (see §5), we present data only for the high p
and the low n; see Table 2. We do give results for both &
values, because this factor may exclude the use of certain
validation statistics (namely, 7) and strongly affect non-
normality of the performance measures X and Y. Further, for
s =1 we also present the statistic 7, as applied by KLEIJ
using the F-table (instead of bootstrapping) after the
normalizing transformation log(X) and log (Y). Finally, for s
> 2 we may condition on the trace or not, but Table 2 shows
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results for conditioning only: we found that conditioning
does indeed improve the power while maintaining the type I
error.

Part A gives results for short subruns (k= 10).

Case s = I: Not applicable (N/A) holds for T,, T;,
and 7, because they have no practical thresholds;
T has a denominator X; = 0 with high probability
so it is also N/A. The table look-up of T, gives a
worse error probability than bootstrapping the
simple statistic 7,; nevertheless, even the latter
statistic gives significantly high a.

Case s = 2: Acceptable - though conservative - results
are given by bootstrapping 7.

Case s = 5: Our bootstrapping gives acceptable - but
conservative - &, except for 7, and T;.

Case s 10: Bootstrapping any statistic gives
acceptable 6. This case gives results more
conservative than s = 5: Bonferroni becomes more
conservative as s increases.

We can prove that as s increases for fixed n, then the EDFs
of the original statistic 7 and the bootstrap statistic
T converge. Because this proof'is rather technical we do not
give it here.

Part B gives results for long subruns (k = 1,000).

Case s = 1: KLEIJ’s procedure gives an acceptable
result; in long runs the nonnormality disappears
after the log transformation.

Case s = 2: Acceptable but conservative results are
again given by bootstrapping 7.

Case s = 5: Bootstrapping the simple statistic T, gives
acceptable a.

Case s = 10: Our bootstrap gives acceptable - but
conservative - & for any statistic except 7, and 7.

Altogether Table 2 suggests the following conclusions.

Case s = 1: All validation statistics give observed type
I error probabilities significantly higher than the
nominal o, except for KLEIJ’s procedure when
long subruns are used.

Case s = 2: Bootstrapping 7 gives ‘best’ conservative
results.

Case s = 5: Bootstrapping the simple statistic 7, gives
acceptable a.

Case s = 10: Bootstrapping any statistic - except for 7,
and T, - gives acceptable @, albeit rather
conservative for short subruns.

Further, these conclusions suggest that - for bootstrapped
validation - a trace-driven simulation model be run more than
twice (using different random numbers).
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The next question is: which of the acceptable validation
statistics has the highest power? Table 3 shows the estimated
power for these statistics, for a given combination of s and .
We select four simulated traffic rates p that differ from the
‘real’ rate p = 1 (see the four rows). Obviously, any statistic
has more power as the simulated load deviates more from the
real load (read within columns). Further, any statistic can
detect smaller deviations between real and simulated traffic
rates when & is larger (10 versus 1,000). For s > 2 the
bootstrapped simple statistic 7, has good power compared
with the more complicated statistics.

We also obtain results for other systems than
M/M/1/FIFO (see §5). However, given the conclusions so
far, we focus on T, when interpreting these results. Then it
suffices to state that the above conclusions also hold for
these systems!

Table 4 gives estimated type I error probabilities in case
of the minimum bootstrap sample size (b = 19). These
probabilities are similar to Table 2, though less conservative
when £ = 10.

Our results (not displayed to save space) further show
that the power is smaller than in case of a large bootstrap
sample size (for s > 1 we use Bonferroni’s inequality in
Table 3, whereas we now randomly select one of the s
values; which confounds the effects of small » and using
only one of the s values).

7 CONCLUSIONS AND FUTURE RESEARCH

In general, bootstrapping is a versatile tool, as it allows the
estimation of the distribution of any statistic 7(Z) for any
type of input distribution for Z. However, this tool requires
mastering the art of modeling: the researchers still have to
interpret their problems. Indeed, EFRON (pp. 115, 383)
states ‘bootstrapping is not a uniquely defined concept ...
alternative bootstrap methods may coexist’.

More specifically, for validation in simulation we
focused on statistical tests for the validation of trace-driven
terminating simulations with i.i.d. response Y. Given the i.i.d.
real response X, we proposed six validation statistics
T/.(X, Y)(G =1, ..., 6). The pairs (X, Y) are correlated, and
may be non-normally distributed.

We developed different bootstrap methods that vary
with the number of simulation replicates (symbol s). All
these methods use subruns. When we have more than two
replicates (s > 2), we either condition or we do not condition
on the trace.

To evaluated and illustrate the resulting tests, we applied
them to single-server queueing simulation models with
different priority rules. Whether these Monte Carlo results
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hold for other applications, requires further research; the
current results might be seen as rules of thumb. These rules
are as follows.

Case s = 1: Most validation statistics give type I error
probabilities higher than the nominal a. If a
normalizing transformation can be found, then
follow KLEIJ; that is, use the F-table without
bootstrapping.

Case s = 2: Bootstrapping T, gives acceptable - but
conservative - results.

Case s > 2: Many statistics give acceptable - possibly
conservative - @&. So we recommend to run a
trace-driven simulation model more than twice. The
simplest statistic, namely the average deviation T,
= Z D/n, has good power compared with the more
complicated statistics.

A surprisingly small bootstrap sample size might suffice
to quickly decide on the validity of a simulation model. Then,
little extra computer time is needed for bootstrapping.
Nevertheless, if the small bootstrap sample results in a
borderline value for the validation statistic, then we
recommend a larger bootstrap sample - especially since in
practice bootstrapping requires far less computer time than
simulation does.

In future research we might extend our analysis to other
terminating simulations (e.g., queueing networks), and to
steady-state and non-stationary simulations. For example, if
the trace does not remain stationary over subruns, then we
may condition and resample one response from each subrun
(column in Table 1; see §4.3).

Whereas we use subruns, EFRON uses overlapping
blocks; also see Shao and Tu (1995, pp.391-392). Such a
sampling procedure has also been explored in non-
terminating, stationary simulation: see Sherman (1995).

We might also study a complication that KLEIJ
mentioned but did not solve: a more general null-hypothesis
states that the difference between the real and the simulated
systems’ expected values is smaller than some positive
constant 9, not necessarily zero:: |E(X) - E(Y)|< 0.

Since bootstrapping uses simulation (Monte Carlo for
resampling the original values z), ‘typical’ simulation
problems may be further explored in a bootstrapping context.
For example, the determination of the sample size in quantile
estimation is a standard problem in simulation; see
Alexopoulos and Seila (1998). We add that computer time
may be saved by not taking a fixed sample size b for the
bootstrap. Instead, we may use Wald’s sequential probability
ratio test (SPRT); see Ghosh and Sen (1991). Variance
reduction techniques may also be applied to bootstrapping.
Indeed, Shao and Tu (1995, pp. 221 - 2228) discuss antithetic
and importance sampling in bootstrapping.

We assumed that the number of replicates s is so small
that bootstrapping is needed. If, however, (say) s = 100, then
we can use classic tests such as Student’s ¢ test, a
distribution-free test (e.g., sign test, rank test), or goodness-
of-fit tests (see D'Agostino and Stephens (1986) and Vincent
(1998)).

APPENDIX: CONVERGENCE OF EDFs OF T, 4*
AND T, AS n INCREASE

We give a theoretical backing for the conditional sampling
bootstrap method described in § 4.3: for 7, (the statistic we
recommend) we show that 7, - E(7T,) has the same

asymptotic distributionas 7, - E(7,),asntends to infinity.
Conditional sampling is both the most interesting and the
most difficult case. Here a bootstrap sample has the form

{Zi* = YiUU) - Y‘VU); l = 17 ) n} (A-l)

i

where (U(7), V(7)) are i.i.d. pairs of random values selected
from the s(s - 1) distinct pairs C= {r, r’; r, r' =1, ..., s,
r # r'}, with all pairs being equally likely to be selected.

This gives

* _ 1
@) - sts - 1)
DIRCAED )
(u, v)EC
1 (A-2)
*2 _
Bz = s(s - 1)
DIRCAED A
(u, v)eC

Elementary considerations show that £(7,)and Var(T,) are
exactly the same as in the unconditional case; moreover with
probability 1, E(T,) -~ E(T,) and Var(T,) - Var(T,).
However the form of the moments in Equation (A-2) shows
that the Z,” are not identically distributed. Thus we need an
additional assumption to guarantee that 7, is asymptotically
normal.

Theorem: Let 7, be calculated from the conditional
bootstrap sample in Equation (A-1) where s > 2. Let

T=E,[Z" -EZ) <
and
K =E,|Z° - EZ") <,
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where the outer expectations are taken with respect to
Y = (YO,..., Y®), thesobservations simulated. Further, let

c(z) = Priyn (T, - E(T}) < z]
¢'(2) = Priyn (I, - T) < z]

Then with probability 1 we have

sup | c(z) - c*(z)| - 0.

(A-3)
Proof: Let

B, =Y. Var(Z)),

C, = Y E(Z - BZ)P).
Then by the strong law of large numbers
n V2B O o
with probability 1 as n - c. Thus

B *J/LC” -0

n

with probability 1 as n - . It follows by Lyapunov’s
Theorem (given in e.g. Petrov (1995) as Theorem 4.9) that
T 4* is asymptotically normally distributed with probability 1.

With probability 1 we have E(T,) - E(T,) and
Var(T, 4*) - Var(T,) so we can apply Theorem 6.7 in Hjorth
(1994) (see also Singh (1981) and Bickel and Freedman
(1981), to show that Equation (A-3) holds.
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Table 2: Estimated Type I Error Probability of Validation Statistic (7) for Varying Number of Simulation Replicates (s) of
M/M/1/FIFO with Number of Customers per Subrun k, Traffic Rate p = 1; Number of Subruns » = 10; Nominal a = 0.10;
Bootstrap Sample Size b = 1,000; Bold Numbers Denote Acceptable Results

D F-table used (instead of bootstrap) after normalizing transformation log(X) and log (¥)

(A) Number of Customers per Subrun k = 10

s T, T, T, T, T, T,

1 2129 N/A N/A 174 N/A N/A

2 021 142 180 172 180 044
5 055 127 142 063 046 068
10 .024 046 059 028 023 033

(B) Number of Customers per Subrun k£ = 1,000

s T, T, T, T, T, T,

1 .098" N/A N/A 167 235 N/A
2 027 196 265 364 358 .050
5 124 252 301 107 118 122
10 096 126 146 .088 095 .080
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Table 3: Estimated Power of Acceptable Statistics 7 for Varying Simulated Traffic Rates p and Fixed Real Traffic Rate p = 1
(for Remaining Symbols See Table 2)

s=1;k=1,000 s=2; k=10 s=2;k=1,000
P T, P T, T, P T, T,
.96 .622 .8 .098 401 .96 249 661
.98 276 9 .039 161 .98 .086 265
1.02 264 1.2 172 .045 1.02 .088 .098
1.04 618 1.4 428 272 1.04 250 419
s=5k=10 s=5; k=1,000
p T, T, T; T, p T,
.8 186 444 148 453 .96 .874
9 .068 204 072 219 .98 434
1.2 220 142 175 .108 1.02 335
1.4 490 434 S11 358 1.04 782
s=10; k=10
P T, T, T, T, T T,
.8 .098 377 350 394 .088 401
9 .039 165 185 .149 .025 161
1.2 172 .0 .003 072 119 .045
1.4 428 .002 .002 353 424 272
s=10; k= 1,000
p T, T, T T,
.96 534 .874 .873 .865
.98 239 404 415 391
1.02 236 338 350 299
1.04 .565 .808 .831 782
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Table 4: Estimated Type I Error Probability Using Small Bootstrap Sample Size b = 19 (Remaining Symbols Defined in Table 2)

Kleijnen, Cheng, and Bettonvil

k=10
s T, T, T, T, T, T,
1 2129 N/A N/A 160 N/A N/A
2 046 198 256 179 245 .061
5 118 185 210 118 173 139
10 100 137 131 112 115 105
k= 1,000
s T, T, T, T, T, T,
1 .098" N/A N/A 150 210 N/A
2 034 183 223 160 172 058
5 121 178 199 120 126 124
10 096 121 132 113 .108 118
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