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ABSTRACT  
 
An object-oriented modeling infrastructure using the Java-
based, Silk simulation classes is defined that enables the 
simulation of multitasking, distributed systems using 
symmetric multiprocessors. The simulation infrastructure is 
being used to evaluate alternative architectures for 
embedded, distributed systems. We show how the under-
lying structure is adapted to several different applications, 
including various Internet applications.  The paper describes 
the infrastructure, its robustness, and the application of the 
model to produce insights for a system under design.  The 
simulation infrastructure enables a high fidelity 
representation of the internal complexity of the application 
on each processing node, the operating system behavior, and 
the disks and network.  The simple yet powerful 
representation leverages the use of the Silk entity-thread 
architecture to achieve a simulation architecture that maps to 
the actual system architecture in both conceptual design and 
processing sequence.  The model has been validated through 
instrumentation of the evolving target system. 
 
1 BACKGROUND 
 
Current information systems architectures are generally 
comprised of multiple computational nodes cooperating in 
a predefined manner.  Distributed systems have been quite 
common in the defense world, evolving to enterprise 
architectures, and are now seen commonly in Internet 
applications as well as many consumer items like 
automobiles. It is critical to get the architecture of these 
systems correct early so as to avoid costly rework and lost 
schedule.  The architecture of these systems is much more 
than the topology of the nodes or the power of the nodes.  
While the topology is important, equally important is the 
design of the processes and the threads that reside in them, 
the characterization of the thread behavior, their scheduling 
algorithms, and defining the inter-process communication 
mechanism. Simulation tools enables the architects to 
assess radically different designs, and choose the one that 
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has the best temporal behavior for the application. With a 
selected architecture with known latency characteristics, 
one has a basis for the creation of performance budgets for 
components of the system and thus is in a better position to 
manage the development to successful completion.  The 
focus of many simulations has unfortunately been on the 
narrower issues of distributed systems like network per-
formance (George et al, 1999).  The system that is 
described here encompasses the network topology, but in-
cludes the thread architecture of each node and the critical 
inter-process communication structure. It is built on a set 
of reusable components situated in a software development 
environment that supports component reuse (Pidd, 1999). 

The specific distributed system described in this 
application is composed of a central node consisting of a 
shared memory multiple processor computer.  Other nodes, 
that also consist of single and multiple processor computers, 
are connected via a high bandwidth local area network.  The 
system uses a threaded software design with Orb-based 
inter-process communication between lightweight processes.  
A SCSI disk backup of data and transactions processed by 
the system is an important part of the system design as these 
backup processes are processor intensive and network 
intensive and are large contributors to message latency.  The 
system design requires scheduling of software processes and 
design of message buffers.  The timing of these scheduling 
decisions and the sizing of these message buffers determine 
the ability to achieve rigorous performance targets for 
resource utilization and message latency. 

In Section 2 of this paper, we discuss the requirements 
of the model-based decision support for distributed systems 
and the objectives of object-oriented simulation support.  
Section 3 is an overview the design of the simulation 
objects and the mapping of the Silk classes to these 
simulation objects.  Section 4 describes features of Java 
and Silk that enables high fidelity visualization of 
distributed system simulation. Section 5 concludes the 
paper with an example of the statistical results and some 
discussion about the benefits and challenges of this 
approach to distributed system simulation. 
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2 OBJECT-ORIENTED MODELING APPROACH 
 
An important result of this work was the achievement of a 
true implementation of object-oriented simulation design 
and execution using Java and the Silk classes (ThreadTec, 
1997). The Silk classes are a Java Application 
Programming Interface (API) for general-purpose, 
discrete-event, process-oriented, object-oriented simulation 
(Healy and Kilgore, 1997).  It was felt that the real success 
of the modeling activity would be dependent upon two 
features of the Silk/Java and the object-oriented simulation 
approach (Joines and Roberts, 1996.).  The first was the 
ability to quickly adapt the behavior of the object-oriented 
modeling components to ever-changing assumptions and 
architectural changes.  The second was the ability to 
accurately represent the system behavior at the right level 
of fidelity of the system components and accurately collect 
statistical information of the impact of system design on 
message latency.  It is necessary to understand each of 
these simulation design requirements to better appreciate 
the Silk implementation described in later sections. 

Simulation in support of distributed system design 
requires the ability to change the model frequently in 
response to new ideas and suggestions.  The process of 
distributed system design usually involves the coordination 
of several vertical and horizontal layers of expertise 
involving different company divisions and even different 
companies.  The required credibility and the timeliness of 
the decision support for this function creates challenges for 
the simulation developer who must anticipate the need for 
intermediate decisions with imperfect information.  It also 
requires anticipation of the continuous refinement of 
system component definitions and behavior.  The ability to 
meet these modeling challenges rests in the ability to 
decompose the distributed system into independent 
modeling components that allow a component-based view 
of the system.  These modeling components must contain 
interfaces that are independent of the structure of 
downstream and upstream components.   

As the distributed system hardware design matures, 
subtle decisions regarding software design begin affecting 
hardware performance and message latency begins impact-
ing areas that intuition would not expect to be impacted.  It 
is critical that the modeling components designed can 
accommodate increasing levels of fidelity regarding the 
definition and behavior of the corresponding system 
components.  It is equally critical that precise statistical 
information regarding system performance, and the reasons 
for the performance, be generated by the simulation. 

In this case, the ability to program in Java and Silk 
was essential for creating the level of fidelity necessary to 
properly define the nature of system delays and the impact 
of software changes on these delays.  Other simulation 
software approaches may have offered easier initial 
construction of the simulation skeleton.  But none were 
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able to flesh-out the skeleton without restrictions than that 
possible in a full-featured object-oriented programming 
language.  Finally, the ability to animate the identity of 
each system message, process and system component in 
detail was essential in providing explanations for the 
unexpected delays that were observed in the summary 
statistical information.  Without this ability to 
simultaneously view multiple systems components and 
individual messages dynamically, the conclusions made 
from the statistical summaries were often erroneous. 

 
3 THE MODEL 
 
In the process of modeling the incremental development of 
a complex command and control system, we have 
developed a set of classes that enable us to model 
messages, threads, light weight processes, and symmetric 
processors.  We have built on the Silk infrastructure of 
entity-threads, animation, statistical reporting, and event 
scheduling classes to produce appropriate statistics that 
characterize the temporal behavior of the system. 

From the point of view of a distributed systems 
application, one typically defines a set of processing nodes, 
which are often symmetric processors, and the network 
topology that connects the nodes.  Then, within each 
processing node, one defines the processes, and within a 
process, the threads of that process.  The lightweight 
processes are operating system facilities to which threads 
are mapped.  Lightweight processes are the units that the 
operating system schedules for execution on the processor.  
Messages are created either externally or internally.  
Messages may enter the system from external hardware or 
may be created in the activity of a thread processing 
another message.  Messages are routed to other threads by 
being placed on their input queue.  A message is defined 
by the threads or hardware, such as disks, that it visits.  
Latency is defined as the time for a message to visit a 
defined set of connected threads and resources.   

The mapping of these system components to Silk 
classes is partially described in Figure 1.  The actual defi-
nition of the target distributed system is beyond the scope 
of this paper but the principal results can be presented 
using this level of decomposition.  The remainder of this 
section describes the necessary function of each class and 
the simulation requirements of the Silk implementation. 

 
3.1 Message Class 
 
The Message class is the foundation class for representing 
the data passed between processes and systems. The 
Message class models the queueing of a message onto the 
input queue of a thread.  Although large varieties of 
message types exist in distributed systems, there are many 
common characteristics and behaviors.  A common Silk 
Message class was created as a parent class which allowed 
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Figure 1:  Silk Class Hierarchy for Distributed Systems Simulation 
 
specific subclasses of  data, network and operating system 
messages to be created without the re-definition of common 
features. The Silk language allows for extension of the basic 
Silk process-oriented methods common to discrete-event 
languages (queue, seize, delay, release, etc.).  The Message 
class extended the Silk Entity methods to create a set of 
message-specific behaviors (generate, execute, send, 
updatestats) that greatly simplified the representation of the 
message sojourn through the system.  As shown in the 
simplified code example in Figure 2, the Silk language 
supports a readable structure for describing message 
behavior uncommon in object-oriented simulation.  A 
particularly useful capability was the dynamic creation of 
new simulation entity objects throughout the simulation as 
opposed to the typical requirement of creating arrays or 
collections of available objects prior to the simulation.  

 
3.2 Process Class 
 
The execute method of the Message class in Figure 1 refers 
to the execution of this Message within a subclass of the 
Process class. The lightweight process (Lwp) class models 
the acquisition of a processor, the processing of messages 
and the reschedule logic of the thread.  An Lwp class in-
corporates the functionality of both the thread and the 
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lightweight process.  It acquires the processor by placing 
itself on the queue of the processors.  Once it has acquired a 
processor, it performs the logic of the thread.  This logic 
may be simple, as in the case of a pure input thread that may 
acquire the data from an object request broker.  The time 
delay associated with the thread executing the message on 
the processor may be represented in a variety of ways. 
 

public class Message extends Entity{ 
 double attStartTime; 
 
 public void process{ 
 } 
 
 public void execute( Message msg, Lwp lwp){ 
  msg.queue( msg.lwp.queue); 
  msg.halt( );  
  msg.seize( msg.lwp.resource ); 
  msg.delay( lwp.lookup( msg.className ); 
  msg.release(msg.lwp.resource ) 
  msg.updatestats( ); 
 } 
} 
public class Packet extends Message{ 
 public void process{ 
  attStartTime = time; 
  execute( lwpa01 ); 
  execute( lwpa02 ); 
  spawn( �PacketA� ); 

} 

Figure 2: Extending Silk Objects and Methods 
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The parent of the Lwp class is the Process class that 
describes common characteristics for a large variety of 
software processes that execute on distributed, multi-
processor systems.  The utilization of the processor is 
dependent on the amount of processing required for the 
message served by these processes and the method in 
which the process itself is implemented within the 
operating system/processor combination.  While the inter-
nal function of these software processes are unique, many 
share the same basic functions of accepting messages into 
process buffers, activating themselves for a period of time 
based on system clock (the Timer class) delays, 
processing message information, and then sleeping for a 
scheduled time period until the prioritized process is 
reinserted into the Processor queue for execution.  
Consequently, a parent Process class provides all of the 
foundation data characteristics and behavior methods 
common to the various Lwp, Operating System, network 
and disk driver subclasses required. 

A consistent object-oriented design pattern between 
Messages and Processes is central to the ability to quickly 
modify the model as new logic is added to the process 
software or new message types are added to the system 
design.  In Java, all of the characteristics and behavior are 
encapsulated within a single class and a single file that 
allows for a modular Silk model structure.  The interface 
between these Silk classes is accomplished through shared 
queues which are identified only by the class name 
characteristic.  Thus, when an additional Lwp class is 
created, the class name string is the only information 
necessary for all of the Messages that use this Lwp.  All of 
the delays, queues and resources which the Messages use 
within the Lwp are generic references from this class name 
string which is used to lookup and return the Lwp object. 

Likewise, the simulation description of the Lwp object 
is independent of the types of Messages that it is executing.  
The Lwp simply pulls the next Message from the interface 
queue, processes it, and then activates the halted message 
when complete.   

This ability to freely mix �entity-push� and �resource-
pull� behavior between classes and within classes in Silk-
based models is ideal for valid representation of distributed 
systems logic.  Traditional process-oriented simulation is 
typically restricted to an �entity-push�, assembly-line 
world view where the focus is on transient entities whose 
aim is to complete a series of process steps.  Also typical of 
traditional process-oriented simulation is the representation 
of passive, unintelligent, capacity-limited resources.  For 
simplistic models, this approach is often sufficient, but in 
multitasking, distributed architectures, there is usually a 
need to model active, intelligent resources that take control 
of decision making within the system.  
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3.3 Processor Class 
 
This importance of this transfer of control is even more 
evident in the interaction between the Process class and the 
Processor class. The Processor class represents the 
symmetric processors.  Each of the operating system and 
lightweight processes must register their interest in being 
processed by insertion into the Processor queue.  
Depending on the number of processors, one or more idle 
entities continuously check this queue for idle processes 
that desire to become active.  As shown in the simplified 
code example in Figure 3, the Silk entity-thread repre-
senting the processor continuously repeats this relatively 
simple process.  It begins by using the Java/Silk while 
(condition( ) ) construct to stop the execution of the Silk 
entity-thread until the condition becomes false indicating 
that an Lwp has now joined the common Processor queue.  
The Processor then removes the Lwp from the queue and 
obtains a reference to the Lwp object.  After changing the 
status of the processor for statistics collection, an initial 
delay for context switching is performed by the Processor. 
 
public class Processor extends Entity{ 

 
Lwp entLwp; //reference an Lwp object 
public void process{ 
while (true) { 
 // wait while processor queue is empty 
 while(condition(queProcessor.getLength()==0)); 
 entLWP = ( Lwp )queProcessor.remove( 1 ); 
 seize( resProcessor ); 
 delay( varContextSwitchTime ); 
 entLWP.attProcessor = this; 
 
 // activate lwp to simulate appropriate delay 
 entLWP.activate( ); 
 // halt processor until lwp complete 
 halt( ); 
 release( resProcessor ); 
} 
 

} 

Figure 3:  Silk Processor Logic Example 
 
It is at this point that the transfer of control returns to the 
Lwp as the processor delay is actually dependent on what 
the Lwp process and message requirements dictate.  The 
Processor entity is halted until the Lwp delays are 
complete.  Note that a reference to the Processor instance 
assigned to this Lwp is stored as a property of the Lwp 
object before the Lwp object is activated.  This allows the 
Lwp to activate the correct Processor object once the pro-
cessing delay is complete. 
 Processor utilization is modeled as a function of the 
message type, its contents, and the thread that is executing 
the message. This provides exceptional versatility and is tied 
explicitly to validation of the target system through instru-
mentation.  Also incorporated into the Lwp class is the 
ability of this class to give up the processor on a regular 
basis so that preemption by other threads of higher priority 
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may take place.  An Event Trace Diagram using the Unified 
Modeling Language (UML) (Rational Software, 2000) is 
presented in Figure 4 that summarizes the interchange 
between the Silk classes. 
 
4 DISTRIBUTED SYSTEMS VISUALIZATION 
 
As mentioned earlier, an important function of distributed 
systems simulation is the presentation of the interaction of 
the system components to component experts.  Each of 
these experts understands the operation of a specific 
component, but must rely on verbal or written descriptions 
of the interactions between components.  For this reason, 
the visualization of the executing Silk simulation of the 
distributed system becomes a necessary part of the 
verification of the model.  Silk employs JavaBean 
components to support the animation of executing Silk 
models through the extension of Java graphical objects 
such as text areas, progress bars and other multimedia 
APIs.  This section describes the approach used to 
communicate the internal details of the model to the system 
engineers via animation.  

The screen image in Figure 5 is typical of the 
overview animation screen that served as the portal for 
navigating through the component and message 
animations.  Using common Java button objects as labels, 
this overview screen allowed the viewer to click within any 
particular component of interest to bring up a more detailed 
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representation of the current state of the component.  The 
ability to follow individual messages through the system 
and understand the impact of message delays elsewhere in 
the system requires this ability to zoom in and out of 
processes frequently. 
 

 A particularly innovative feature of distributed sys-
tems animation enabled by Silk and Java is the dynamic 
creation of Message entity icons that could be uniquely 
labeled or colored based upon Message class, source 
creation time, or latency.  Rather than static images, these 
icons could be dynamically changed throughout their 
sojourn based on a common symbol attribute that was 
updated  based on the individual characteristics of each 
Message entity.  This ability to visualize messages with 
dynamic status information was an enormous aid in 
verification of the model by the simulation developers.  It 
also allowed the investigation of non-intuitive statistical 
results that occurred since it allowed for the tracking of 
individual message latencies and the system state which 
caused these latencies to occur.  This provided direct 
feedback to the system architects and software developers 
and provided a test bed for timely and economical analysis 
of the alternatives proposed to improve performance. 

In addition to animation, detailed traces were created 
to log the interaction of system components both on the 
screen and to log files.  In addition to the overall log file 
that summarized all system activity at the macro level, 
individual process and message logs were created to allow 
Figure 4:  UML Event Trace Diagram of the Interaction of Silk Classes for Distributed Systems 
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Figure 5:  Animation of Silk Simulation of Distributed System 
convenient tracking of behavior by component type.  An 
important feature of these logs was that all entities are 
uniquely identified using the same identifiers as used in the 
executing Java/Silk program.  Thus, model verification and 
debugging could be accomplished directly within the base 
language using professional-quality debugging tools, rather 
than in the tools and trace provided by a simulation 
language and language-specific simulation environments.  
This removed of an entire layer of model verification errors 
(from simulation language to underlying programming 
language).  And the use of an industry-standard program-
ming language and programming interface allowed for 
�non-simulation-trained� programmers involved in system 
software development to participate in the simulation 
verification and debugging activity.  It is much more likely 
that these same engineers can be used for model 
maintenance and updates in the future than if a special-
purpose simulation language or simulator was employed.  

The present state of Java performance is vastly 
improved since it origins in 1995, but animation of this 
complexity required a minimum 256MB of RAM and 600+ 
MHz processors for simulations with hundreds of 
concurrent messages in the system. 

 
5 RESULTS 
 
There are two significant results of the effort to date.  For 
the target distributed system, a great deal of useful 
information is being generated by the model on the desired 
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performance measures of processor utilization and message 
latency.  The Excel chart shown in Figure 6 is typical of 
the simulation output for message latency which identifies 
the queueing and processing delays by message throughout 
the simulation.  It is important to note in the chart that each 
component of the system sojourn time represents the 
prototype instrumentation results.  A particular difficult 
statistic in these types of models is the proper allocation of 
latency to the actual source of queueing delays since 
messages wait for both processes to be scheduled and 
processors to be available.  The ability of Silk entities to 
exist in an unlimited number of queues simultaneously was 
helpful in the collection of this information. 

The second result is that the investment in the generic 
structure of the model has paid off in that it has been easily 
adapted to the simulation of other message-based systems 
such as the modeling of web-server software and database 
processing involved in internet transaction processing (Banga, 
1997; Burke and Kilgore, 2000; Hu et al, 1998 ).  While the 
ability to reuse Silk simulation objects for these extensions is 
still not without code modification, the use of consistent 
object-oriented design patterns has made this task much 
simpler and straightforward than previous efforts with pro-
cedural-language-based, process-oriented languages.  It is ex-
pected that the growth of interest in modeling and simulation 
of distributed architectures for web-based transaction 
processing will continue.  The application of technologies and 
tools from simulation of signal processing and communication 
networks is an obvious foundation for this work. 
07



Kilgore and Burke 

 

 
 

Figure 6:  Message Latency Statistical Charts Identify Delays by Component Source 

 
There are a number of challenges yet remaining in this 

application regarding the design of input and output user 
interfaces for experimental design and execution.  While 
Silk has no output processing capabilities within the core 
API, Java database connectivity is being investigated to 
leverage spreadsheet and database interfaces for auto-
mating output analysis and presentation.  The advantage of 
using an industry-standard programming language does 
mean that third-party Java tools for these tasks are 
available and must simply be accessed from within the Silk 
simulation classes.  The downside is that this additional 
non-simulation specific code may reduce the ability to 
reuse simulation objects in other applications where these 
optional input and output objects are not required. 
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