
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

OBJECT-ORIENTED SIMULATION OF DISTRIBUTED
SYSTEMS USING JAVA® AND SILK®

Richard A. Kilgore

ThreadTec, Inc.
P.O. Box 7

St. Louis, MO 63006, U.S.A.

Emmett Burke

Symbi Systems, Inc.
816 SW Normandy Terrace
Seattle, WA 98166, U.S.A.

ABSTRACT

An object-oriented modeling infrastructure using the Java-
based, Silk simulation classes is defined that enables the
simulation of multitasking, distributed systems using
symmetric multiprocessors. The simulation infrastructure is
being used to evaluate alternative architectures for
embedded, distributed systems. We show how the under-
lying structure is adapted to several different applications,
including various Internet applications. The paper describes
the infrastructure, its robustness, and the application of the
model to produce insights for a system under design. The
simulation infrastructure enables a high fidelity
representation of the internal complexity of the application
on each processing node, the operating system behavior, and
the disks and network. The simple yet powerful
representation leverages the use of the Silk entity-thread
architecture to achieve a simulation architecture that maps to
the actual system architecture in both conceptual design and
processing sequence. The model has been validated through
instrumentation of the evolving target system.

1 BACKGROUND

Current information systems architectures are generally
comprised of multiple computational nodes cooperating in
a predefined manner. Distributed systems have been quite
common in the defense world, evolving to enterprise
architectures, and are now seen commonly in Internet
applications as well as many consumer items like
automobiles. It is critical to get the architecture of these
systems correct early so as to avoid costly rework and lost
schedule. The architecture of these systems is much more
than the topology of the nodes or the power of the nodes.
While the topology is important, equally important is the
design of the processes and the threads that reside in them,
the characterization of the thread behavior, their scheduling
algorithms, and defining the inter-process communication
mechanism. Simulation tools enables the architects to
assess radically different designs, and choose the one that
18

has the best temporal behavior for the application. With a
selected architecture with known latency characteristics,
one has a basis for the creation of performance budgets for
components of the system and thus is in a better position to
manage the development to successful completion. The
focus of many simulations has unfortunately been on the
narrower issues of distributed systems like network per-
formance (George et al, 1999). The system that is
described here encompasses the network topology, but in-
cludes the thread architecture of each node and the critical
inter-process communication structure. It is built on a set
of reusable components situated in a software development
environment that supports component reuse (Pidd, 1999).

The specific distributed system described in this
application is composed of a central node consisting of a
shared memory multiple processor computer. Other nodes,
that also consist of single and multiple processor computers,
are connected via a high bandwidth local area network. The
system uses a threaded software design with Orb-based
inter-process communication between lightweight processes.
A SCSI disk backup of data and transactions processed by
the system is an important part of the system design as these
backup processes are processor intensive and network
intensive and are large contributors to message latency. The
system design requires scheduling of software processes and
design of message buffers. The timing of these scheduling
decisions and the sizing of these message buffers determine
the ability to achieve rigorous performance targets for
resource utilization and message latency.

In Section 2 of this paper, we discuss the requirements
of the model-based decision support for distributed systems
and the objectives of object-oriented simulation support.
Section 3 is an overview the design of the simulation
objects and the mapping of the Silk classes to these
simulation objects. Section 4 describes features of Java
and Silk that enables high fidelity visualization of
distributed system simulation. Section 5 concludes the
paper with an example of the statistical results and some
discussion about the benefits and challenges of this
approach to distributed system simulation.
02

Kilgore and Burke

2 OBJECT-ORIENTED MODELING APPROACH

An important result of this work was the achievement of a
true implementation of object-oriented simulation design
and execution using Java and the Silk classes (ThreadTec,
1997). The Silk classes are a Java Application
Programming Interface (API) for general-purpose,
discrete-event, process-oriented, object-oriented simulation
(Healy and Kilgore, 1997). It was felt that the real success
of the modeling activity would be dependent upon two
features of the Silk/Java and the object-oriented simulation
approach (Joines and Roberts, 1996.). The first was the
ability to quickly adapt the behavior of the object-oriented
modeling components to ever-changing assumptions and
architectural changes. The second was the ability to
accurately represent the system behavior at the right level
of fidelity of the system components and accurately collect
statistical information of the impact of system design on
message latency. It is necessary to understand each of
these simulation design requirements to better appreciate
the Silk implementation described in later sections.

Simulation in support of distributed system design
requires the ability to change the model frequently in
response to new ideas and suggestions. The process of
distributed system design usually involves the coordination
of several vertical and horizontal layers of expertise
involving different company divisions and even different
companies. The required credibility and the timeliness of
the decision support for this function creates challenges for
the simulation developer who must anticipate the need for
intermediate decisions with imperfect information. It also
requires anticipation of the continuous refinement of
system component definitions and behavior. The ability to
meet these modeling challenges rests in the ability to
decompose the distributed system into independent
modeling components that allow a component-based view
of the system. These modeling components must contain
interfaces that are independent of the structure of
downstream and upstream components.

As the distributed system hardware design matures,
subtle decisions regarding software design begin affecting
hardware performance and message latency begins impact-
ing areas that intuition would not expect to be impacted. It
is critical that the modeling components designed can
accommodate increasing levels of fidelity regarding the
definition and behavior of the corresponding system
components. It is equally critical that precise statistical
information regarding system performance, and the reasons
for the performance, be generated by the simulation.

In this case, the ability to program in Java and Silk
was essential for creating the level of fidelity necessary to
properly define the nature of system delays and the impact
of software changes on these delays. Other simulation
software approaches may have offered easier initial
construction of the simulation skeleton. But none were
180
able to flesh-out the skeleton without restrictions than that
possible in a full-featured object-oriented programming
language. Finally, the ability to animate the identity of
each system message, process and system component in
detail was essential in providing explanations for the
unexpected delays that were observed in the summary
statistical information. Without this ability to
simultaneously view multiple systems components and
individual messages dynamically, the conclusions made
from the statistical summaries were often erroneous.

3 THE MODEL

In the process of modeling the incremental development of
a complex command and control system, we have
developed a set of classes that enable us to model
messages, threads, light weight processes, and symmetric
processors. We have built on the Silk infrastructure of
entity-threads, animation, statistical reporting, and event
scheduling classes to produce appropriate statistics that
characterize the temporal behavior of the system.

From the point of view of a distributed systems
application, one typically defines a set of processing nodes,
which are often symmetric processors, and the network
topology that connects the nodes. Then, within each
processing node, one defines the processes, and within a
process, the threads of that process. The lightweight
processes are operating system facilities to which threads
are mapped. Lightweight processes are the units that the
operating system schedules for execution on the processor.
Messages are created either externally or internally.
Messages may enter the system from external hardware or
may be created in the activity of a thread processing
another message. Messages are routed to other threads by
being placed on their input queue. A message is defined
by the threads or hardware, such as disks, that it visits.
Latency is defined as the time for a message to visit a
defined set of connected threads and resources.

The mapping of these system components to Silk
classes is partially described in Figure 1. The actual defi-
nition of the target distributed system is beyond the scope
of this paper but the principal results can be presented
using this level of decomposition. The remainder of this
section describes the necessary function of each class and
the simulation requirements of the Silk implementation.

3.1 Message Class

The Message class is the foundation class for representing
the data passed between processes and systems. The
Message class models the queueing of a message onto the
input queue of a thread. Although large varieties of
message types exist in distributed systems, there are many
common characteristics and behaviors. A common Silk
Message class was created as a parent class which allowed

3

Kilgore and Burke

Message
Class

Process
Class

Packet
Class

Packet A
Class

Packet B
Class

Packet C
Class

Light Weight
Process

Class
Oper System

Process
Class

System
Class

Processor
Class

Disk
Class

TCP/IP
Class

Disk
Driver
Class

SILK Entity
Class

Network
Class

Network X
Class

Console
Class

Sensor
Class

Process
Message
Classes

Timer
Class

Network Y
Class

Figure 1: Silk Class Hierarchy for Distributed Systems Simulation

specific subclasses of data, network and operating system
messages to be created without the re-definition of common
features. The Silk language allows for extension of the basic
Silk process-oriented methods common to discrete-event
languages (queue, seize, delay, release, etc.). The Message
class extended the Silk Entity methods to create a set of
message-specific behaviors (generate, execute, send,
updatestats) that greatly simplified the representation of the
message sojourn through the system. As shown in the
simplified code example in Figure 2, the Silk language
supports a readable structure for describing message
behavior uncommon in object-oriented simulation. A
particularly useful capability was the dynamic creation of
new simulation entity objects throughout the simulation as
opposed to the typical requirement of creating arrays or
collections of available objects prior to the simulation.

3.2 Process Class

The execute method of the Message class in Figure 1 refers
to the execution of this Message within a subclass of the
Process class. The lightweight process (Lwp) class models
the acquisition of a processor, the processing of messages
and the reschedule logic of the thread. An Lwp class in-
corporates the functionality of both the thread and the
180
lightweight process. It acquires the processor by placing
itself on the queue of the processors. Once it has acquired a
processor, it performs the logic of the thread. This logic
may be simple, as in the case of a pure input thread that may
acquire the data from an object request broker. The time
delay associated with the thread executing the message on
the processor may be represented in a variety of ways.

public class Message extends Entity{
 double attStartTime;

 public void process{
 }

 public void execute(Message msg, Lwp lwp){
 msg.queue(msg.lwp.queue);
 msg.halt();
 msg.seize(msg.lwp.resource);
 msg.delay(lwp.lookup(msg.className);
 msg.release(msg.lwp.resource)
 msg.updatestats();
 }
}
public class Packet extends Message{
 public void process{
 attStartTime = time;
 execute(lwpa01);
 execute(lwpa02);
 spawn(�PacketA�);

}

Figure 2: Extending Silk Objects and Methods
4

Kilgore and Burke
The parent of the Lwp class is the Process class that
describes common characteristics for a large variety of
software processes that execute on distributed, multi-
processor systems. The utilization of the processor is
dependent on the amount of processing required for the
message served by these processes and the method in
which the process itself is implemented within the
operating system/processor combination. While the inter-
nal function of these software processes are unique, many
share the same basic functions of accepting messages into
process buffers, activating themselves for a period of time
based on system clock (the Timer class) delays,
processing message information, and then sleeping for a
scheduled time period until the prioritized process is
reinserted into the Processor queue for execution.
Consequently, a parent Process class provides all of the
foundation data characteristics and behavior methods
common to the various Lwp, Operating System, network
and disk driver subclasses required.

A consistent object-oriented design pattern between
Messages and Processes is central to the ability to quickly
modify the model as new logic is added to the process
software or new message types are added to the system
design. In Java, all of the characteristics and behavior are
encapsulated within a single class and a single file that
allows for a modular Silk model structure. The interface
between these Silk classes is accomplished through shared
queues which are identified only by the class name
characteristic. Thus, when an additional Lwp class is
created, the class name string is the only information
necessary for all of the Messages that use this Lwp. All of
the delays, queues and resources which the Messages use
within the Lwp are generic references from this class name
string which is used to lookup and return the Lwp object.

Likewise, the simulation description of the Lwp object
is independent of the types of Messages that it is executing.
The Lwp simply pulls the next Message from the interface
queue, processes it, and then activates the halted message
when complete.

This ability to freely mix �entity-push� and �resource-
pull� behavior between classes and within classes in Silk-
based models is ideal for valid representation of distributed
systems logic. Traditional process-oriented simulation is
typically restricted to an �entity-push�, assembly-line
world view where the focus is on transient entities whose
aim is to complete a series of process steps. Also typical of
traditional process-oriented simulation is the representation
of passive, unintelligent, capacity-limited resources. For
simplistic models, this approach is often sufficient, but in
multitasking, distributed architectures, there is usually a
need to model active, intelligent resources that take control
of decision making within the system.

18

3.3 Processor Class

This importance of this transfer of control is even more
evident in the interaction between the Process class and the
Processor class. The Processor class represents the
symmetric processors. Each of the operating system and
lightweight processes must register their interest in being
processed by insertion into the Processor queue.
Depending on the number of processors, one or more idle
entities continuously check this queue for idle processes
that desire to become active. As shown in the simplified
code example in Figure 3, the Silk entity-thread repre-
senting the processor continuously repeats this relatively
simple process. It begins by using the Java/Silk while
(condition()) construct to stop the execution of the Silk
entity-thread until the condition becomes false indicating
that an Lwp has now joined the common Processor queue.
The Processor then removes the Lwp from the queue and
obtains a reference to the Lwp object. After changing the
status of the processor for statistics collection, an initial
delay for context switching is performed by the Processor.

public class Processor extends Entity{

Lwp entLwp; //reference an Lwp object
public void process{
while (true) {
 // wait while processor queue is empty
 while(condition(queProcessor.getLength()==0));
 entLWP = (Lwp)queProcessor.remove(1);
 seize(resProcessor);
 delay(varContextSwitchTime);
 entLWP.attProcessor = this;

 // activate lwp to simulate appropriate delay
 entLWP.activate();
 // halt processor until lwp complete
 halt();
 release(resProcessor);
}

}

Figure 3: Silk Processor Logic Example

It is at this point that the transfer of control returns to the
Lwp as the processor delay is actually dependent on what
the Lwp process and message requirements dictate. The
Processor entity is halted until the Lwp delays are
complete. Note that a reference to the Processor instance
assigned to this Lwp is stored as a property of the Lwp
object before the Lwp object is activated. This allows the
Lwp to activate the correct Processor object once the pro-
cessing delay is complete.
 Processor utilization is modeled as a function of the
message type, its contents, and the thread that is executing
the message. This provides exceptional versatility and is tied
explicitly to validation of the target system through instru-
mentation. Also incorporated into the Lwp class is the
ability of this class to give up the processor on a regular
basis so that preemption by other threads of higher priority
05

Kilgore and Burke
may take place. An Event Trace Diagram using the Unified
Modeling Language (UML) (Rational Software, 2000) is
presented in Figure 4 that summarizes the interchange
between the Silk classes.

4 DISTRIBUTED SYSTEMS VISUALIZATION

As mentioned earlier, an important function of distributed
systems simulation is the presentation of the interaction of
the system components to component experts. Each of
these experts understands the operation of a specific
component, but must rely on verbal or written descriptions
of the interactions between components. For this reason,
the visualization of the executing Silk simulation of the
distributed system becomes a necessary part of the
verification of the model. Silk employs JavaBean
components to support the animation of executing Silk
models through the extension of Java graphical objects
such as text areas, progress bars and other multimedia
APIs. This section describes the approach used to
communicate the internal details of the model to the system
engineers via animation.

The screen image in Figure 5 is typical of the
overview animation screen that served as the portal for
navigating through the component and message
animations. Using common Java button objects as labels,
this overview screen allowed the viewer to click within any
particular component of interest to bring up a more detailed
18

representation of the current state of the component. The
ability to follow individual messages through the system
and understand the impact of message delays elsewhere in
the system requires this ability to zoom in and out of
processes frequently.

 A particularly innovative feature of distributed sys-
tems animation enabled by Silk and Java is the dynamic
creation of Message entity icons that could be uniquely
labeled or colored based upon Message class, source
creation time, or latency. Rather than static images, these
icons could be dynamically changed throughout their
sojourn based on a common symbol attribute that was
updated based on the individual characteristics of each
Message entity. This ability to visualize messages with
dynamic status information was an enormous aid in
verification of the model by the simulation developers. It
also allowed the investigation of non-intuitive statistical
results that occurred since it allowed for the tracking of
individual message latencies and the system state which
caused these latencies to occur. This provided direct
feedback to the system architects and software developers
and provided a test bed for timely and economical analysis
of the alternatives proposed to improve performance.

In addition to animation, detailed traces were created
to log the interaction of system components both on the
screen and to log files. In addition to the overall log file
that summarized all system activity at the macro level,
individual process and message logs were created to allow
Figure 4: UML Event Trace Diagram of the Interaction of Silk Classes for Distributed Systems

Time Message
Source Messages Process

Queue Process Processor
Queue Processor Processor

Resource
create

queue length
L>0

queue
length

L>0
seize

activate
halt

halt

remove
process

msg
activate

halt

activate
release

dispose

start

delay to
resched

time

remove

activate

delay

delay
queue

halt
06

Kilgore and Burke

Figure 5: Animation of Silk Simulation of Distributed System
convenient tracking of behavior by component type. An
important feature of these logs was that all entities are
uniquely identified using the same identifiers as used in the
executing Java/Silk program. Thus, model verification and
debugging could be accomplished directly within the base
language using professional-quality debugging tools, rather
than in the tools and trace provided by a simulation
language and language-specific simulation environments.
This removed of an entire layer of model verification errors
(from simulation language to underlying programming
language). And the use of an industry-standard program-
ming language and programming interface allowed for
�non-simulation-trained� programmers involved in system
software development to participate in the simulation
verification and debugging activity. It is much more likely
that these same engineers can be used for model
maintenance and updates in the future than if a special-
purpose simulation language or simulator was employed.

The present state of Java performance is vastly
improved since it origins in 1995, but animation of this
complexity required a minimum 256MB of RAM and 600+
MHz processors for simulations with hundreds of
concurrent messages in the system.

5 RESULTS

There are two significant results of the effort to date. For
the target distributed system, a great deal of useful
information is being generated by the model on the desired
18

performance measures of processor utilization and message
latency. The Excel chart shown in Figure 6 is typical of
the simulation output for message latency which identifies
the queueing and processing delays by message throughout
the simulation. It is important to note in the chart that each
component of the system sojourn time represents the
prototype instrumentation results. A particular difficult
statistic in these types of models is the proper allocation of
latency to the actual source of queueing delays since
messages wait for both processes to be scheduled and
processors to be available. The ability of Silk entities to
exist in an unlimited number of queues simultaneously was
helpful in the collection of this information.

The second result is that the investment in the generic
structure of the model has paid off in that it has been easily
adapted to the simulation of other message-based systems
such as the modeling of web-server software and database
processing involved in internet transaction processing (Banga,
1997; Burke and Kilgore, 2000; Hu et al, 1998). While the
ability to reuse Silk simulation objects for these extensions is
still not without code modification, the use of consistent
object-oriented design patterns has made this task much
simpler and straightforward than previous efforts with pro-
cedural-language-based, process-oriented languages. It is ex-
pected that the growth of interest in modeling and simulation
of distributed architectures for web-based transaction
processing will continue. The application of technologies and
tools from simulation of signal processing and communication
networks is an obvious foundation for this work.
07

Kilgore and Burke

Figure 6: Message Latency Statistical Charts Identify Delays by Component Source

There are a number of challenges yet remaining in this

application regarding the design of input and output user
interfaces for experimental design and execution. While
Silk has no output processing capabilities within the core
API, Java database connectivity is being investigated to
leverage spreadsheet and database interfaces for auto-
mating output analysis and presentation. The advantage of
using an industry-standard programming language does
mean that third-party Java tools for these tasks are
available and must simply be accessed from within the Silk
simulation classes. The downside is that this additional
non-simulation specific code may reduce the ability to
reuse simulation objects in other applications where these
optional input and output objects are not required.

REFERENCES

Banga, G. and P. Druschel. 1997. Measuring the capacity

of a web sServer, USENIX Symposium on Internet
Technologies and Systems (SINTS).

George, Alan D., R. Fogarty, J. Markwell and M. Miars.
1999. An integrated simulation environment for
parallel and distributed system prototyping, Simulation
72(5): 283-294.

Healy, K. and R. Kilgore. 1997. SilkTM: A Java-based
process simulation language. In Proceedings of the
1997 Winter Simulation Conference, ed. S.
180
Andradóttir, K. Healy, D. Withers, and B.L. Nelson,
475-482. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Healy, K. and R. Kilgore. 1998. Introduction to SilkTM
amd Java-based simulation. In Proceedings of the
1998 Winter Simulation Conference, ed. D. Meideros,
E. Watson, J. Carson, and M. Manivannan, 327-334.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey..

Hu, James, Sumedh Mungee and Douglas C. Schmidt.
1998. Principles for developing and measuring high-
performance web servers over ATM, In Proceedings
of INFOCOM �98.

Joines, J.A. and S. D. Roberts. 1996. Design of object-
oriented simulations in C++. In Proceedings of the
1996 Winter Simulation Conference, ed., John
Charnes, Douglas Morrice, Dan Brunner, and James
Swain, 65-72. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Kilgore, R. A., Healy, K. J. and Kleindorfer, G. B. 1998.
The Future of Java-based Simulation. In Proceedings
of the 1998 Winter Simulation Conference, ed. D. J.
Medeiros, E. F. Watson, J. S. Carson, M. S.
Manivannan, 1707-1712. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Kilgore, R. and K. Healy. 1998. Java, Enterprise
simulation and the SilkTM simulation language. In
8

Kilgore and Burke

Proceedings of the 1998 International Conference on
Web-Based Modeling & Simulation, ed. P. Fishwick,
D. Hill, and R. Smith. SCS, San Diego CA.

Kilgore, R., K. Healy, and G. Kleindorfer . 1998. SilkTM:
Usable and reusable Java-based object-oriented
simulation. In Proceedings of the 12th European
Simulation Multiconference. SCS International, Ghent,
Belgium.

Pidd, Michael , Noelia Oses and Roger J. Brooks.
Component-based simulation on the Web? 1999 In
Proceedings of the 1999 Winter Simulation
Conference, ed., P. A. Farrington, H. B. Nembhard, D.
T. Sturrock, and G. W. Evans, Institute of Electrical
and Electronics Engineers, Piscataway, New Jersey.

Rational Software, 2000. UML (Unified modeling
lLanguage), <www.rational.com/um>.

ThreadTec, Inc. 1997. Silk, A Java-Based Process
Simulation Language, <www.threadtec.com>.

AUTHOR BIOGRAPHIES

RICHARD A. KILGORE is President of ThreadTec, Inc.,
the developers and distributors of the Silk simulation
software. He has over 20 years of experience as a
modeling consultant to Fortune 500 firms in a variety of
industries. He received his B.B.A. and M.B.A degrees
from Ohio University and Ph.D. in Management Science
from the Pennsylvania State University. Formerly, he was
a capacity-planning analyst with Ford Motor Co. and Vice-
President of Products for Systems Modeling Corp. His e-
mail and web address are <kilgore@threadtec.com>
<www.threadtec.com>.

EMMETT BURKE is a consultant in the design and
optimization of distributed systems architectures. He has
over 20 years of experience with a number of advanced
design teams in the analysis and performance measurement
of a wide range of commercial and military distributed
systems projects. His interests include object-oriented
simulation and the application of UML for system design
and documentation. He is also involved in the design and
optimization of advanced technologies used in wastewater
treatment facilities. . His e-mail address is <emmett@
symbi.com>.

Silk is a registered trademark of ThreadTec, Inc.
Java is a registered trademark of Sun Microsystems, Inc.

1809

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

