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ABSTRACT

We present a technique for analyzing a simulation
metamodel that has been constructed using a variance-
stabilizing transformation.  To compute a valid confidence
interval for the expected value of the original simulation
response at a selected factor-level combination (design
point), we first compute the corresponding confidence
interval for the transformed response at that factor-level
combination and then untransform the endpoints of the
resulting confidence interval.  Taking the midpoint of the
untransformed confidence interval as our point estimator of
the expected simulation response at the selected factor-
level combination and approximating the variance of this
point estimator via the delta method, we formulate an
approximate two-sample Student t-test for validating our
metamodel-based estimator versus the results of making
independent runs of the simulation at the selected factor-
level combination.  We illustrate this technique in a case
study involving the design of a manufacturing cell, and we
compare our results with those of a more conventional
approach to analyzing transformed-based simulation
metamodels.  A Monte Carlo performance evaluation
shows that significantly better confidence-interval
coverage is maintained with the proposed procedure over a
wide range of values for the residual variance of the
transformed metamodel.
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1 A CASE STUDY IN MANUFACTURING
CELL DESIGN

In Irizarry et al. (2000a, b) we present an approach to
manufacturing-cell design and analysis based on the use of
a generic manufacturing-cell simulation model together
with effective techniques for response surface estimation
and optimization. This methodology consists of four major
steps: (i) selection of cell design and operation issues; (ii)
development of a comprehensive cell performance
measure; (iii) identification of critical design and operation
factors for the cell; and (iv) optimization of cell
performance as a function of the cell�s critical design and
operation factors.

The methodology was applied to a cell for the
assembly of printed circuit boards. A detailed description
of the cell is presented in Irizarry et al. (2000a).  In this
study we concentrated attention on following the cell
operational issues: setup policy (SU), unit load size (UL),
lot size (LT), machine minor stoppages (ST), quality policy
(QL), and maintenance policy (MA). These became the
input factors for the factor-screening experimentation.  The
performance measure chosen for the evaluation of
alternative cell designs was a comprehensive annualized
cost function that incorporates ten major cost components
as detailed in Irizarry (1996).
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1.1 Identification of Critical Design
and Operation Factors

Since it is likely that only a few of the selected cell design
and operation factors will have a significant impact on cell
performance, we performed a factor-screening experiment
as the first step of our procedure. In the printed circuit
board case study, the factor-screening experiment was a

162 −  fractional factorial design in two blocks of 16 design
points each.  This is a resolution V design�that is, no
main effect or two-factor interaction is confounded with
any other main effect or two-factor interaction (Mont-
gomery 1991).  Table 1 summarizes the input factors and
factor levels selected for the factor-screening experiment.

Table 1: Description of Factor Levels for the Factor-
Screening Experiment

Factor Level 1
(Coded Value �1)

Level 2
(Coded Value +1)

SU Long (unreduced)
setup times

Quick changeovers
(75% reduction)

UL Large
 (≈ 50% of lot size)

Small
(≈ 10% of lot size)

LT Large lots (groups
of customer orders)

Small lots (individual
customer orders)

ST Small rolls of
Components

Bigger rolls of
Components

QL Traditional
Inspections

Quality at the source

MA Breakdown
Maintenance

Autonomous and
Preventive maintenance

The objective of the screening experiment was to
identify the important main effects and two-factor
interactions. Cell performance at each design point was
evaluated using the generic cell simulator that we
introduced in Irizarry et al. (2000a).  We performed a
statistical analysis of the results using the general linear
model procedure GLM of SAS (1990).

In the regression analysis for the factor-screening
experiment of the case study, the significance probabilities
(P-values) for the corresponding estimated regression
coefficients were used to identify significant main effects
and two-factor interactions.  For a significance level of 5%,
the significant main effects were setup time (SU), unit load
size (UL), lot size (LT), minor stoppages (ST), and
maintenance (MA).  The significant two-factor interactions
were: lot size with unit load size (LT×UL); lot size with
setup time (LT×SU); lot size with minor stoppage
(LT×ST); and setup time with minor stoppages (SU×ST).

In the factor-screening analysis for the case study, the
estimated regression coefficient for the maintenance policy
(MA) was highly significant; however, this factor was not
found to interact with any other factor. A detailed analysis
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of the cell�s annual cost showed that investments and
interruptions caused by the high level of maintenance had a
negative impact on cell performance. We concluded that
maintenance should be set at its low level (MA = �1) in all
subsequent experimentation.

1.2 Optimization of Cell Performance

After the factor-screening analysis was complete, a response
surface experimental design was used to construct an
adequate approximation to the target response surface and to
estimate the optimal settings for the significant input factors
as well as the expected optimal response.  In the case study,
the corresponding simulation experiment included two
qualitative factors (lot size, LT, and machine stoppages, ST)
each at two levels; and for every combination of these
qualitative input factors, we performed a 32 full factorial
simulation experiment to estimate the expected annual cell
operating cost as a function of the selected quantitative
factors (setup time, SU, and unit load size, UL). The overall
simulation macroexperiment consisted of four separate 32

factorial experiments. Three independent simulation runs
were performed at each design point of each 32 factorial
experiment, yielding a total of 27 runs per experiment and a
total of 108 independent simulation runs in the entire
macroexperiment. Table 2 summarizes the input-factor
levels used in all these scenarios.

The statistical analysis of the results of the simulation
macroexperiment was performed using the SAS response
surface regression procedure RSREG with a 5%
significance level (SAS 1990).  We estimated a response
surface for each of the four experiments contained in the
macroexperiment using a metamodel that is a quadratic
function of the two regressors (setup time, SU, and unit
load size, UL).  Canonical and ridge analyses of the
estimated metamodel yielded the optimal design point

)L�U,U�S(� *** =X  (that is, the stationary point of the fitted
response surface); see pages 332�381 of Box and Draper
(1987). Residuals were analyzed using the SAS procedure
UNIVARIATE, which includes moments, quantiles, stem-
and-leaf plots, box plots, and normal probability plots
(SAS 1990). Table 3 summarizes the results from this
analysis.

We found experiments 1 and 3 to exhibit similar
behavior in the shape of their estimated response surfaces,
with both metamodels having the same significant
regressors as well as similar values for the predicted mean
response at the corresponding stationary point.  The P-
values in the lack-of-fit tests for these metamodels are
0.948 and 0.964, respectively.  Recall that each P-value
represents the smallest level of significance at which the
observed value of the goodness-of-fit test statistic would
cause us to reject the null hypothesis that the corresponding
metamodel has the correct functional form. Since the
observed P-values are much larger than the significance
4
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Table 2: Factor Levels for the Response Surface Macroexperiment
Factor Level 1 (�1) Level 2

( 0 )
Level 3

(+1)

SU Long (unreduced) setup times Quick changeovers
(37.5% reduction)

Quick changeovers
(75% reduction)

UL Large (≈ 50% of lot size) Medium (≈30% of lot size) Small (≈ 10% of lot size)

LT Large lots (groups of
customer orders)

Small lots (individual customer orders)

ST Small rolls of components Bigger rolls of components

Table 3:  Results from the Statistical Analysis of the Simulation Macroexperiment

Experiment
Significant
Regressors

Estimated Optimum
Response  )�(� *XY

Residual Skewness and Excess
Kurtosis

Std. Error of
)�(� *XY

1 UL, SU, UL2, SU2   $1,954,905 �0.0071,  �1.0607        $5,136
2 SU, SU2 �$1,425,522 0.6259,    1.7765      $82,588
3 UL, SU, UL2, SU2   $1,937,638 0.0677,  �0.5288        $4,322
4 SU, SU2    �$161,378 �0.6946,    5.3033  $2,290,593
levels commonly used for hypothesis testing, we found the
metamodels for experiments 1 and 3 to exhibit no
significant lack of fit.

The original metamodels developed for experiments 2
and 4 resulted in negative predictions for the expected annual
cost at the stationary point and in other regions of the input-
factor space.  Moreover, in experiments 2 and 4 we found
that the estimated residuals exhibited significant departures
from normality�especially in terms of the sample skewness
and excess kurtosis of the residuals. Finally the standard error
of )�(� *XY  is much larger for experiments 2 and 4 than it is
for experiments 1 and 3; and we found that introducing
additional design points and then fitting a higher-order
metamodel did not improve the behavior of the estimated
residuals as measured by their sample variance, skewness,
and excess kurtosis.  We concluded that in order to obtain
usable response-surface models in experiments 2 and 4, we
must do the following: (a) identify and apply an appropriate
variance stabilizing transformation of the original simulation-
generated responses (Box and Draper 1987); and (b) augment
the set of regressors (independent variables) in the
corresponding metamodels to include relevant higher-order
terms.  These conclusions are consistent with our previous
experience in building simulation metamodels for certain
types of textile production systems as discussed, for example,
in Powell (1992).

2 TRANSFORMATION-BASED METAMODELS

We examined several transformations of the response in
our search for metamodels with a better fit to the results
observed in experiments 2 and 4; see pages 280�293 of
7

Box and Draper (1987).  Moreover, we added design points
to these experiments to allow estimation of higher-order
metamodels.  Based on examination of the fitted response
surfaces for experiments 2 and 4 as described in Table 3,
we augmented these experiments with selected design
points that would allow us to estimate third-order
metamodels.  Statistical analyses of these more complex
metamodels were performed using SAS�s general linear
model procedure GLM (1990).  Table 4 summarizes the
results of this follow-up analysis for experiments 2 and 4.

Let D denote the overall design matrix for a response
surface experiment so that each row of D has the form
W(X), where the first element of W(X) is 1 and the other
elements are the corresponding regressors defined in Table
4; thus, for example, at each design point X in experiment
2, we have

].UL,SU,UL,SU,UL,SU,1[
)UL,SU()(

3322=

=WXW

If the transformation ( ) ( )[ ]XYfXZ =  achieves
normal responses with mean W(X)β and constant variance

2
Zσ , then the usual least squares estimator 

∧
β  of the

metamodel coefficient vector β  yields the prediction

( ) ( )
∧∧

= βXWXZ  that is unbiased and has variance

( ) ( )( ) ( )      .Var T1T2 XWDDXWXZ Z
−∧

=







σ
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Table 4:  Results for Selected Transformations of the Response in Experiments 2 and 4
Experiment 2 Experiment 4

Significant Regressors SU, UL, SU2, UL2, SU3 , UL3 SU, UL2, SU2, SU3

Normalizing Transformation Z(X)=f[Y(X)] Z(X) = ln[Y(X)] Z(X) = 10000/Y(X)
Predicted Annual Cost )�(� *XY  = )]�(�[ *1 XZf −

at the stationary point *�X
$1,647,899 $1,730,652

Standard Error of )�(� *XY $26,649 $12,454

Residual Skewness and Excess Kurtosis 0.2690,   1.4656 �0.0404,   0.5661
Thus an estimator of the standard error of )(� XZ  is given by

,)())((�)](�SE[ T1T XWDDXWXZ Z
−= σ

where Zσ� is the standard deviation of the estimated
residuals in the response surface (regression) analysis;
moreover, a valid ( )%1100 α−  confidence interval for
E[Z(X)] = E })]([{ XYf is

( ) ( ) (1)                                                                  ,XHXZ ±
∧

where the half-length of the confidence interval is

( ) ( )( ) ( )   ,� T1T
,2/1 XWDDXWtXH Z

−
−= σνα

a standard result from normal regression theory. In terms
of the metamodel for the original untransformed responses,
we propose the following ( )%1100 α−  confidence interval

for E[Y(X)] = })]([{E 1 XZf − :

( ) ( ) ( ) ( ) (2)              , ,max ,,min 2121 






















 ∧∧∧∧

XYXYXYXY

where the endpoints of (2) are:

( ) ( ) ( )     ,    1
1 



 −=
∧

−
∧

XHXZfXY

( ) ( ) ( )      .     1
2 



 +=
∧

−
∧

XHXZfXY

If (1) is a valid ( )%1100 α−  confidence interval for
E[Z(X)], then (2) is an approximate ( )%1100 α−
confidence interval for E[Y(X)] since in general the
operators E[⋅] and )(1 ⋅−f are not commutative; but we
believe that (2) will perform well in practice.
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As a point estimator of E[Y(X)], we propose the
midpoint of (2),

( ) ( ) ( ) (3)                                          ,
2
1

21 







+=
∧∧∧

XYXYXY

as an alternative to the point estimator ( )]�[1 XZf −  used in
Irizarry et al. (2000b).  We believe that (3) is a more robust
point estimator that may be used more reliably, for
example, in statistical tests for validating the fitted
metamodel versus simulation-based estimates of E[Y(X)].
To use (3) in such tests, we estimate )](�[Var XY  using the
delta method (Stuart and Ord 1994). In terms of the
auxiliary functions
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the estimated standard error of )(� XY  is given by

( ) ( )( ) ( )

( ) ( ) ( ) ( )       .
2
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Next we proceed to apply equations (4)�(6) to the
transformations used on experiments 2 and 4 in Irizarry et
al. (2000b).

To validate the final metamodel for a simulation
experiment, we assess the statistical and practical
significance of the difference between the metamodel-
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predicted mean response and the simulated-generated mean
response at the same stationary point.  The results from n
independent replications of the simulation model at the
stationary point are combined with the results of evaluating
(3) and (6) to build the following confidence interval for
the difference between the metamodel- and simulation-
based estimates of optimal cell performance (see equations
(15.4.15)�(15.4.17) of Hald 1952):

( ) ( ) ( )[ ]{ } (7)           ,  �SE� 2/12
)(

2
/2,1 XYSXYtXYXY +±− − ηα

where: 2
)( XYS is the estimated variance of the simulation

mean response )(XY  based on n independent replications
of the simulation at the design point X; and η, our approxi-
mation to the �effective� degrees of freedom for the complex
variance estimator ( ) 2

)(
2 ]�[SE XYSXY + in (7), is taken to be

[ ]{ }
[ ] (8)                                    ,

1
)(�SE

)(�SE
4

)(
4

22
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−
+

+
=

n
SXY

SXY

XY

XY

ν

η

with ν denoting the degrees of freedom for the residual
mean square in the regression analysis used to estimate the
associated response surface, and n denoting the number of
independent simulation runs performed at X.

2.1 Follow-Up Analysis for Transformation-
Based Metamodel in Experiment 2

In the two-dimensional region of interest for experiment 2,
we obtained the best results using the normalizing
transformation

( ) ( ) ( )  (9)                       . that     so     ln 1−=′= yyfyyf

Inserting (9) into (2)�(5), we obtain
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The standard error of ( )XY
∧

 is estimated by inserting
results from equations (10)�(11) in equation (6), yielding

( )[ ] ( )[ ]
( ) ( ) ( )12      .   

8
)](��[�                   

�SE�SE
2

,2/12
12

2

ν
να−−+×

=

t
XYXYXY

XZXY

Table 5 contains a 95% confidence interval for
)]�(�E[ *XY , the expected value of the original simulation

response at the stationary point *�X , together with
)]�(�SE[ *XY , the estimated standard error for the predicted

response at *�X .  These results are very similar to those
reported in Table 6 of Irizarry et al. (2000a).  However, we
believe that in other situations in which the original
responses display more pronounced departures from
normality, more reliable statistical tests will result from
using the estimators (3) and (6) proposed in this paper.  As
summarized in Section 3 below, the results of the Monte
Carlo study provide strong support for this conclusion.

Table 5: Confidence Interval and Standard Error for the
Predicted Response at the Stationary Point in Experiment 2

Statistics for Transformed
Responses

Computed Value

)�(� *XZ 14.315

)]�(�SE[ *XZ 0.017992

Effective degrees of freedom ν 31
t0.975,31 2.042

95% Confidence Interval [14.28, 14.35]

Statistics for Untransformed
Responses

Computed Value

)�(� *
1 XY $1,588,000

)�(� *
2 XY $1,710,000

)�(� *XY $1,649,000

)]�(�[SE *XY $29,700

2.2 Follow-Up Analysis for Transformation-Based
Metamodel of Experiment 4

In this experiment the normalizing transformation with the
best results was

( ) ( ) (13)        .10      that     so       10 2414 −− −=′= yyfyyf
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Table 6: Confidence Interval and Standard Error for the
Predicted Response at the Stationary Point in Experiment 4

Statistics for Transformed
Responses

Computed Value

)�(� *XZ 0.005778
)]�(�SE[ *XZ 0.00004158

Effective degrees of freedom
ν

33

t0.975,32 2.0372

95% Confidence Interval [0.005693 , 0.005863]

Statistics for Untransformed
Responses

Computed Value

)�(� *
1 XY $1,756,000

)�(� *
2 XY $1,706,000

)�(� *XY $1,731,000

)]�(�[SE *XY $12,500

By inserting (13) into (2)�(5), we obtain
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1

−∧∧
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2
1, 2

2
2

1
4

1 XYXYXHXZg +−=



 −
∧

and

( ) ( ) [ ] (15)                .)(�)(�10
2
1, 2

2
2

1
4

2 XYXYXHXZg −=



 −
∧

The statistic for estimating the standard error of )(� XY  is
obtained by evaluating equation (6) with results from (14)�
(15).  The resulting equation is

( )[ ] ( )[ ]

( ) ( ) ( ) ( )   . 
2

]��[]��[               

�SE10
2
1�SE

2
,2/122

2
2

1
22

2
2

1

4

ν
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−

−++×

=

t
XYXYXYXY

XZXY

A 95% confidence interval and the estimated standard
error for the predicted response at the stationary point for
results from experiment 4 are presented in Table 6.  Again
these results are close to those reported in Table 5 of
Irizarry et al. (2000b).
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2.3 Validation of Final Fitted
Metamodel for Experiment 2

In Irizarry et al. (2000b), we concluded that experiment 2
yielded the optimum setting for the input factors defining
the operation of the manufacturing cell.  To validate the
final fitted metamodel for experiment 2, we performed n =
20 independent replications of the simulation model at the
estimated stationary point *�X for experiment 2, yielding an
average annual cost of $1,736,000 with a sample standard
deviation of $14,000.  Table 7 summarizes the result of
evaluating (7) and (8) with *�XX = .

Table 7 shows that the 95% confidence interval (7) for
the difference between the metamodel-predicted mean
response and the mean response from the simulation runs
does not contain zero.  Therefore, we concluded that there is
a statistically significant difference between the metamodel-
and simulation-based estimates of the optimal expected cell
cost.  However, of greater importance is the practical
significance of the difference between these two estimates as
measured by the percentage deviation of the metamodel-
based estimate from the simulation-based  estimate,

{ }   5%.   )�()�()�(�100 =deviation % *** −=− XYXYXY

Table 7:  95% Confidence Interval for Difference between
Metamodel- and Simulation-Based Predictions of Optimal
Cell Performance

Simulation-Based
Estimates

Metamodel-Based
Estimates

)�( *XY = $1,736,060 )�(� *XY = $1,649,000

)�( *XYS =$14,000/ 20

=$3,151

)]�(�SE[ *XY = $29,700

n = 20 ν = 31

α = 0.05,     η = 31,

ηα ,2/1−t  = 2.040

A 95% Confidence Interval for )]�()�(�E[ ** XYXY −  is
[�$148,000,  �$26,000].

In our experience, a �5% deviation of a metamodel-based
performance estimate from the corresponding simulation-
based estimate is not practically significant; and thus we
concluded that the metamodel could be used effectively to
evaluate cell performance under other scenarios within the
region of interest in the input-factor space.

3 MONTE CARLO STUDY

To compare the performance of the proposed confidence
interval (2) for a transformation-based metamodel versus
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the conventional (or �naïve�) method as specified in
equations (9) and (10) of Irizarry et al. (2000b), we
conducted a Monte Carlo performance evaluation of both
techniques. The comparison is primarily based on the
empirical coverage probability of nominal 95% confidence
intervals for E[Y(X)] when the design point X is fixed.

For the Monte Carlo study, we examined the situation
in which each simulation-generated response Y(X) has a
lognormal distribution, which is approximately repre-
sentative of many metamodel estimation problems that we
have encountered in practice.  In this situation, the
logarithm transformation of the original response yields a
normally distributed variate�that is, we have Z(X) =
f[Y(X)] = ln[Y(X)] ~ N(E[Z(X)], 2

Zσ ).  We assume that the
transformed metamodel is linear in the unknown
metamodel coefficients and has the correct functional form
so that the residuals of the transformed metamodel have
mean 0.  For simplicity we take E[Z(X)] = 0 and
W(X)(DTD)�1WT(X) = 1 so that Var[Z(X)] = 2

Zσ .   
The experimental procedure consisted of (a)

generating 20 independent and identically distributed
observations of the transformed response Z(X) ~ N(0, 2

Zσ );
and (b) constructing nominal 95% confidence intervals for
the mean E[Y(X)] of the untransformed response based on
the proposed technique (2) as well as the conventional
technique based on equations (9) and (10) of Irizarry et al.
(2000b).  To estimate the actual coverage probabilities
delivered by these two confidence-interval procedures, we
performed 10,000 replications of each procedure for
different values of Zσ  ranging from 0.10 to 2.0.  Table 8
summarizes the results of the experimental performance
evaluation.  Notice that for each entry in Table 8 with
corresponding actual coverage probability 95%, the
standard error of that entry is 10000/05.095.0 ⋅  = 0.002
or 0.2%; and the standard error of every entry in Table 8 is
at most 0.5%

Table 8: Percent Coverage of 95% Confidence Intervals
(CIs) for E[Y(X)] Based on 10,000 Replications of Each CI

Zσ Proposed CI (2) Conventional CI

0.10 95.5 95.1
0.25 95.2 93.1
0.50 94.8 87.5
0.75 93.8 80.3
1.00 92.8 73.0
1.25 91.4 65.2
1.50 89.1 58.0
1.75 86.9 50.5
2.00 84.5 43.3
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Table 8 shows that the proposed confidence interval
(2) substantially outperforms the conventional confidence
interval based on equations (9) and (10) of Irizarry et al.
(2000b) when the residual variance of the transformed
metamodel is relatively large.  For example, when Zσ  =
1.75, the actual coverage probability of nominal 95%
confidence intervals is 86% for the proposed method (2)
and 51% for the conventional method.  We believe that the
results in Table 8 provide good evidence of the robustness
of our proposed confidence intervals against large residual
variance in the transformed metamodel.

Table 9 summarizes the results of a similar
experimental performance comparison of the proposed
validation procedure based on displays (7) and (8) versus
the conventional procedure based on displays (11) and (12)
of Irizarry et al. (2000b).

Table 9: Percent Coverage of 95% CIs for Metamodel
Validation Based on 10,000 Replications of Each CI

Zσ Proposed CI (7) Conventional CI

0.10 95.2 94.8
0.25 96.2 94.8
0.50 97.1 94.8
0.75 97.0 94.9
1.00 96.7 94.8
1.25 96.2 94.4
1.50 95.5 93.8
1.75 94.7 93.2
2.00 93.7 92.3

The results in Table 9 suggest that the proposed
metamodel validation procedure based on (7) and (8) may
slightly outperform the conventional procedure, but the
differences in performance do not appear to be practically
significant.  We believe that a more extensive performance
evaluation of the two validation procedures is required
before any definitive conclusions can be reached about the
advantages and disadvantages of either procedure.  This is
the subject of ongoing research.

4 CONCLUSIONS AND RECOMMENDATIONS

In our experience applying response surface methodology
to simulation experiments, we have found that it is often
necessary to work with variance-stabilizing transforma-
tions of the original simulation-generated responses in
order to obtain approximately normal responses with a
nearly constant variance.  Unfortunately once a metamodel
has been fitted to the transformed responses, there are no
readily available, clear-cut guidelines on how the trans-
formed metamodel should be used to make valid inferences
about the performance of the underlying simulation model
9
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in terms of the original performance measures of interest.
In Irizarry et al. (2000b), we followed what might be
considered the conventional approach to the analysis of
such transformation-based metamodels.

In this paper we have proposed an alternative method
for the analysis of transformation-based simulation
metamodels which should be more robust than the
conventional approach in applications that exhibit a large
residual variance for the transformed metamodel.  The
results of a preliminary Monte Carlo performance evalua-
tion provide substantial support for the claim that the
proposed confidence interval (2) generally delivers accept-
able coverage probability and significantly outperforms its
conventional  (naïve) counterpart�provided that the
transformed simulation response is approximately normal
and the metamodel fitted to the transformed responses is an
adequate approximation to the true underlying transformed
response surface.

It is also clear from our experimentation that as a point
estimator of the mean E[Y(X)] of the original (untrans-
formed) simulation response Y(X), the midpoint (3) of the
proposed confidence interval (2) can still have significant
bias.  We are currently investigating methods for effec-
tively reducing the bias of (3) while still allowing the user
to validate the fitted metamodel against the results of
additional runs of the simulation model.
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