
1 AutoSimulations Symposium 2000 — Discovering New Frontiers

USING A PORTABLE SIMULATION STRUCTURE
WITH EMULATION FOR OFFLINE TESTING

John Hodgson
Director, Operation Services
Coca-Cola Enterprises Inc.

Atlanta, GA

Marc Katz
Project Engineer

Coca-Cola Enterprises Inc.
Atlanta, GA

ABSTRACT
Coca-Cola Enterprises’ (CCE) engineering group
develops controls using programmable logic
controllers (PLC) for production lines and the
beverage process systems that support them.
Frequently, the first testing of these control systems
occurs in the live environment, and is the last step in
getting multi-million dollar systems operating. This
causes extended debugging time during the system
start-up and places a great amount of pressure on our
controls engineers to finish.

CCE has utilized Automod’s Model Communications
Module (MCM) to establish communication between
the PLC hardware we use to control our production
lines and an AutoMod simulation of one of our lines.
With this new technology, CCE now has the ability
to emulate a production line before it exists, and
develop and test line controls in their native PLC
environment.

We are working with a simulation of our Fort Worth,
Texas 20oz production line. This model is built with
a modular structure that supports restructuring in a
very rapid order to describe a different production
line. Photoeye objects, motors, and other resources
are modeled in the simulation. The state of these
objects may be set or read by the PLC connected to
the simulation computer using DDE commands
provided in the MCM module of AutoMod.

Currently, this capability is being used to develop a
PLC based Line Information System. This system
collects downtime event information from a line’s
PLC and enters the information into an ODBC
database for viewing, reporting, and analysis with
standard database applications in a PC environment.
AutoMod is being used to emulate a production line,
including statistically generated downtime events
within the model, which are monitored by the PLC
data collection process.

The Model Communication Module functionality has
provided a valuable tool for our engineers to develop
solutions in a lab rather than working with live
production system.

This paper will describe the module program
structure, as well as the use of the MCM to exchange
information between the PLC and an AutoMod
simulation.

INTRODUCTION
Coca-Cola Enterprises has many high speed filling
and packaging lines. The speeds of the lines may be
as high as 1,200 containers per minute on bottle lines
and 2,300 cpm on cans. Many of the machines
require the packages to be single file when entering.
However, because of the differing MTTF/MTTR of
the various machines, mass conveyor is used between
machines to provide accumulation. We use intricate
control systems to balance varying machine and
conveyor speeds throughout a production line. Due
to the instability of some of our packages, accurate
line controls are crucial to line high efficiencies.
Likewise, because of the large variation in machine
costs and production speeds, proper machine
selection is the key to balancing capital outlay to line
performance.

CCE was looking for a method to reduce controls
debugging time on line start-ups, and to answer ‘what
if?’ questions regarding machinery selection and
speeds. Because of the large number of production
lines CCE operates, over 200, any simulation
developed would have to be easily adaptable to
different line configurations. Also, the simulation
needed to be easily changed by a multiple
programmers and portable to non-programmers. For
these reasons, a modular simulation model with data
entry through Excel was developed.

Furthermore, in order to develop PLC controls and a
Line Information System, the program had to be
organized in a manner that would readily allow for
information exchange with a PLC.

Using A Portable Simulation Structure With Emulation for Offline Testing

2 AutoSimulations Symposium 2000 — Discovering New Frontiers

The following will describe the program structure,
later we will discuss using the MCM and
communicating with the PLC.

PROGRAM STRUCTURE
The body of the program is divided into three main
areas, container flow, machine controls, and
photoeyes. The driving area is the container flow.
As containers travel on conveyors through the
system, they trigger events that activate loads or
functions in the other two areas of the program.

An initialization function reads in the machine speed
information from an Excel spreadsheet. This is done
so that various machine speeds can be tested without
having to edit the AutoMod program. Base conveyor
speeds and other global variables are set in this area.
The initialization function also clones control loads to
the machine control processes for each machine on
the line.

Container Flow
The flow of containers throughout the system is
controlled by the conveyor system. Containers travel
from one station to the next. The speed of the
conveyors are determined by the surrounding
machines. All conveyors are given a base speed of 1
container per minute (cpm) dependent upon their
width. The machines then control the speed by
multiplying the base speed by the machine speed and
an additional factor. This area of the program is very
straight forward.

When a load arrives at a machine it updates the
machines speed and status by ordering a load through

the machines control process. If a machine is
running when a load arrives at it, the load uses the
resource and continues. If the machine status is
down, then the load waits on an order list.

begin P_Filler arriving
travel to conv:stafillerin1
travel to conv:stafillerin
order 1 load from O_FillCont to continue
if V_Fill = 0 then wait to be ordered on
O_Fill
wait until R_Filler status <> down
get R_Filler
travel to conv:stafillout
free R_Filler
travel to conv:staSDin
travel to conv:sta12
set load type to L_7
send to P_Warmer

end

The load type of the container is changed to reflect
the conveyor width and amount of accumulation.

Photoeyes
Photoeyes (PE’s) are physically placed on the
conveyor system in the same position and manner
they are used in an actual system. The PE timeout
blocked and cleared times are set. When a load
blocks a PE for a set period of time, the PE blocked
timeout function is automatically called by AutoMod.
This function sets a variable within the model, used
to determine the PE’s state in other areas, and
releases loads in the relevant control areas.
Additionally, calls can be made here to send
information to the PLC regarding the state of the PE.

The following is an example of a PE that feeds the
filler:

begin conv:normPhotoType cleared timeout function
/* Filler prime eye */
if thePhotoeye = conv:PE12 then
begin

set V_PE12 to 0
order 1 load from O_FillCont to continue

end
end

Similar logic is used for the blocked and cleared
functions of all other PE’s.

Machine Controls
The machine control processes are located in a
separate file. A process first sets the speeds of all
conveyors in and out of the machine. Then the

Photoeyes

Container
Flow

Machine
Control

Photoeye Timeout
Functions

Load calls from
order lists

Program Structure

Excel

Using A Portable Simulation Structure With Emulation for Offline Testing

3 AutoSimulations Symposium 2000 — Discovering New Frontiers

control load going through that process is placed on
an order list. Whenever an event that effects the
speed or status of the machine occurs (i.e. container
travels to machine or photoeye on conveyor is
blocked) the load is ordered to continue from the
order list. The load travels through a series of
conditional statements to determine the speed and
status of the machine. Once this is determined the
appropriate calls are made to set this information
within the simulation. The load then returns to the
top of the process to wait on the order list.

begin P_FillCont arriving
set conv:fillerin velocity to (V_FillSpd *
V_BVfillerin)
set conv:FB3 velocity to (V_FillSpd * 1.5 *
V_BVFB3)
…
set SMFill to R_Filler state
print V_FillSpd to sTemp
call SetDDE(VDDEPtr,"N27:15",sTemp)
wait to be ordered on O_FillCont
if (Q_bidi1 current > 120) then set V_FillSpd to
V_FillLoSpd
else set V_FillSpd to V_FillRunSpd

if R_Filler status <> down then
begin

if V_PE12 = 0 then
begin

set V_Fill to 0
set R_Filler state to lack
print "Lack" to B_Filler

call SetDDE(VDDEPtr,"N27:10","2")
send to P_FillCont

end
…

end

In these processes, machine status/speeds can be
communicated to and from the PLC. This is done
using the call statements, and will be discussed later.

Machine MTTF and MTTR’s are set using the
resource cycles. The resource cycles call resource
functions, which set the resource state and order the
control loads to continue.

RPROC fillerdown
begin

take down R_Filler
set SMFill to fault
print "Faulted" to B_Filler
order 1 load from O_fillerdown to continue

end

Modular Programming
In each of the program files, each machine and
surrounding conveyor is divided into its own process.
When programming, we can combine the different
processes of different types and multiple machines to
simulate the line we are modeling. The only
additional work that is required by the programmer is
the physical layout of the conveyor, and
renumbering/renaming the control stations and PE’s.

MODEL/PLC
COMMUNICATIONS
Once the production line simulation was developed
and tested, we used it as a tool to feed data to the
Line Information System (LIS) we were developing.

The LIS consists of a PLC based SCADA layer, a
SQL server database and a Visual Basic client. It
uses existing production line PLC’s to gather line
performance data and provides dozens of real time
monitoring screens, plus historical pareto reports for
downtime analysis and troubleshooting.

On the production line, each machine’s PLC sends its
current status and speed to a host PLC. A monitoring
program records the frequency and duration of
downtime events for each piece of equipment on the
line.

We needed the ability to test both the data collection
and reporting tools of the LIS without having to be
on-site or interfere with production equipment. In
order to do this we acquired the MCM from
AutoMod and connected our simulation model
directly to the PLC.

The DDE.c source file was provided by AutoMod.
This was included in the model. Rockwell
Software’s ‘RSLinx Professional’ was required for
the PLC to PC interface. Within this software we
defined a DDE project titled ‘PLCEmulator’. This
simply points the software to the correct PLC. Then
we established a communication channel with PLC
software from the model. The is done in the model
initialization function:

set VDDEPtr to ConnectDde("RSLINX",
"PLCEmulator")

The communication channel is established with a
‘handle’. This ‘handle’ is used with each read and
write to the PLC. While testing the LIS, we sent one
of four states for each machine from the simulation to
the PLC. These states are running, lack, back-up and

Using A Portable Simulation Structure With Emulation for Offline Testing

4 AutoSimulations Symposium 2000 — Discovering New Frontiers

fault. If the current machine state was fault, then we
also added additional information as to the type of
fault.

call SetDDE(VDDEPtr,"N27:10","2")

Reads from the PLC can be done in the same way
using the GetDDE call.

At the end of the simulation, the link to the PLC
software must be closed.

begin model finished function
call DisConnectDde(VDDEPtr)

end

To obtain the results we required from emulation, we
needed to synchronize the model and LIS clocks.
This was done using model synchronization code
provided by Todd Lebaron at AutoMod.

Although the communication line is different, the
host PLC is receiving identical information from the
simulation to that it would get from the individual
line PLC’s. From this we were able to test the
database and display functionality of the LIS.

RESULTS
The production line simulation allowed us to make
informed decisions on equipment replacement in our
Fort Worth facility. By using the model with
different speed inputs, and different MTTF/MTTR
numbers, it was determined that replacing the current
packer with a faster one would not improve overall
line efficiencies.

The LIS system was fully tested prior to
implementation, eliminating errors on the database
and display part of the system during start-up.

Finally, it is our intention to use model/PLC
communications in the future to debug PLC controls
for a syrup room installation. The will not only
shorten the system installation time, but also lower
the risk of a costly controls error.

	ABSTRACT
	INTRODUCTION
	PROGRAM STRUCTURE
	Container Flow
	Photoeyes
	Machine Controls
	Modular Programming

	MODEL/PLC COMMUNICATIONS
	RESULTS

