
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

ADDING ANIMATION TO A SIMULATION USING PROOF�

James O. Henriksen

Wolverine Software Corporation
2111 Eisenhower Avenue, Suite 404

Alexandria, VA 22314-4679, U.S.A.

ABSTRACT

Proof Animation� is a family of products for adding
animation to discrete event simulations. Proof is available in
a variety of versions, including an inexpensive, student
version, mid-size and unlimited-size commercial versions, a
run-time version, and a royalty-free, redistributable demo
viewer. Proof is an ASCII-stream-driven, general-purpose
animation system which runs on readily available PC hard-
ware. Its vector-based geometry provides a large animation
canvas and the ability to zoom in or out, while maintaining
crisp, clear images. Proof includes built-in drawing tools and
CAD import/export for ease in creating animation layouts.
Proof�s open architecture makes it ideally suited for serving
as a concurrent or post-processed animation engine for
models written in a wide variety of simulation and program-
ming languages. Proof�s superior power and performance
assure smooth, realistic motion for animations, regardless of
their size, complexity, or application. Proof uses Microsoft�s
DirectDraw interface for accessing video hardware.
DirectDraw is a built-in component of Windows 98, NT4,
and 2000, and it is available as an add-on for Windows 95.
Proof is able to exploit high-performance MMX hardware.

1 INTRODUCTION

Proof Animation is a general-purpose animator designed
for use with the widest possible variety of simulation tools.
Every Proof animation requires two ASCII input streams,
(1) a layout stream, describing static characteristics of an
animation, e.g., the background drawing over which ob-
jects move, and (2) a trace stream, which is a time-ordered
sequence of commands which create, destroy, move, and
otherwise change objects displayed on the layout, portray-
ing events in a simulation. Both of these streams are free-
format ASCII text, with well documented (�open�) archi-
tectures which can be generated easily in a variety of ways.

Proof can be used in post-processing mode or directly
driven by another program. When Proof is used in post-
processing mode, its input streams must be stored in files.
Trace files are almost always written using a simulation
191
language or package, such as SLX (Henriksen 1998),
GPSS/H (Crain 1997) , Extend, Slam, Siman,
Simscript II.5, etc. Trace files can be written using non-
simulation languages, such as C, and simple trace files can
even be prepared using a text editor. Layout files are
almost always developed using Proof�s built-in drawing
tools. Proof also includes a CAD import feature, allowing
quick importing of .DXF files. Layout files can also be
generated by a program. While this is not done very often,
it can and has been done straightforwardly.

When Proof is directly coupled to simulation software,
input streams are transmitted to Proof one line at a time via
subroutine call. Proof can be directly driven by any
program which is capable of constructing C-compatible
Dynamic Link Library (DLL) calls; i.e., the directly driven
version of Proof is packaged as a Windows DLL.

Proof�s open, simulation-language-independent archi-
tecture is a great strength, both technically and comercially.
From the user�s perspective, Proof provides the opportunity
to add high-quality animation to a simulation developed
using existing tools, with no requirement to purchase and
use simulation tools provided by Wolverine Software. From
Wolverine�s perspective, Proof provides a stream of sales to
users already committed to buying and using simulation
tools provided by Wolverine�s competitors.

Because language independence is such an important
strength of Proof, every effort will be made to ensure that
improvements to Proof preserve this independence.
However, from time to time, improvements may be made
to Proof solely for exploitation by Wolverine Software�s
simulation products, e.g., SLX and GPSS/H.

2 THE PROOF ANIMATION FAMILY

The Proof Animation product family runs on readily avail-
able, inexpensive PC hardware. All versions require a 486
or better CPU, a math coprocessor, and a VGA-compatible
video card. Proof is able to exploit MMX (multi-media
extensions) hardware, but MMX hardware is not required
for running Proof. For non-MMX hardware, MMX features
are emulated, incurring an overhead of 10-30%.

Henriksen

Proof is a Windows 95/98/NT4/2000 application.
Future improvements to Proof will be made only to the
Windows version of Proof. An older version of Proof which
runs under DOS, Windows 3.x, and OS/2 as a 32-bit
extended DOS application has been frozen. Running Proof
as a Windows application requires DirectDraw driver sup-
port for the video hardware used. DirectDraw is an integral
component of Windows 98, Windows NT4 (Service Pack 4
required) and Windows 2000. Direct-Draw run-time sup-
port is available free-of-charge as an add-on to Windows 95.
A set of Windows icons is supplied with each of the Proof
Animation products to provide single-click launching. The
following products comprise the Proof Animation family:

� PROOF ANIMATION
Proof Animation is an entry-level version of
Proof. Memory size is fixed and limited. It in-
cludes built-in CAD import/export feature. It
is adequate for small to mid-sized animations.

� PROOF PROFESSIONAL
Proof Professional exploits all available
virtual memory for animating large systems.
It includes a built-in CAD import/export
feature.

� RUN-TIME PROOF PROFESSIONAL
Run-time Proof Professional runs developed
animations or presentations, but has no
animation development capabilities. It
provides a low cost way to run different
scenarios with a fixed layout file prepared
using Proof Professional or Proof Animation.

� STUDENT PROOF ANIMATION
The student version of Proof Animation is
included with the Using Proof Animation
text. Size and playing time limitations are
imposed; otherwise it is identical to Proof
Animation.

� PROOF ANIMATION DEMO MAKER
Demo versions of animations can be prepared
under a licensed copy of Proof Animation or
Proof Professional containing the Demo-
Maker add-on. Copies of the executable
demo files can be reproduced and distributed
free of charge and viewed by anyone.

� PROOF ANIMATION DEMO VIEWER
The Proof Demo Viewer, which is available
free-of-charge, is used to view demos
prepared with the Demo Maker.

3 THE GENERAL-PURPOSE APPROACH

3.1 Loosely-Coupled Interface

While built to work easily with Wolverine�s SLX and
GPSS/H simulation software, Proof Animation also pro-
19
vides affordable and powerful animation software to users
who develop models in other simulation and programming
languages. This, in fact, was a major goal in the design of
Proof. We wanted to develop an interface which made
Proof easy to use as a �back end� for the widest possible
variety of simulation-based �front ends.� This approach
allows prospective purchasers of simulation and animation
software to adopt a mix-and-match strategy, basing their
purchasing decisions on what they feel to be an appropriate
combination of functionality and pricing. The number of
success stories using Proof Animation with other software
continues to grow.

3.1.1 ASCII Input Streams

Proof Animation is driven by ASCII streams. Therefore,
any software capable of formatting ASCII text can be used
with Proof Animation. Proof requires two ASCII input
streams, a layout stream and a trace stream. The layout
stream describes the geometric details of the background
over which objects move, provides geometric definitions
and properties for such objects, and defines logical paths
along which the objects move.

Ordinarily, layout streams are produced at least in part
by using Proof Animation�s drawing tools; however, the
layout stream command set specifications are published so
programs can easily be written to generate layout streams.
For example, some users have written front ends for their
simulation models that allow different system design
parameters to be specified for each run. Based on these
parameters, different geometric configurations are written
and incorporated into a layout stream. The new layout
appears on screen when Proof Animation is invoked.

The trace stream contains a time-ordered sequence of
commands such as CREATE, DESTROY, PLACE, PLOT,
MOVE, SET SPEED, SET COLOR and many more. This
stream provides Proof Animation with information on
when, where, and what to create, destroy, place, plot, etc.
Trace streams are free-format, and the commands are
easily learned and used. They provide exactly the kind of
flexibility necessary to easily be integrated with the
simulation model logic. Any language that can produce
formatted ASCII output can write a trace stream.

3.1.2 The Post-Processor Version of Proof

Proof is most commonly used as a post-processor, i.e.,
Proof runs after a simulation has run to completion. In
post-processing mode, both the layout and trace streams
must exist as files before invoking Proof Animation.

Two great advantages result from the post-processing
approach. First, PC hardware is not shared between the
simulation and the animation. This leaves the entire CPU
for running the animation. Second, it provides the abilities
to jump back and forth in time during the animation
2

Henriksen

playback, to speed up or slow down the viewing speed, or
show all or a specific portion of an animation. These
features make it easy to investigate unusual system
behavior or highlight points of interest.

3.1.3 The Concurrent (DLL) Version of Proof

A user-callable version of Proof is available in the form of
a Dynamic Link Library (DLL). Any software which can
format ASCII text commands and generate C-compatible
subroutine calls can exploit the DLL version of Proof.
Since trace stream information is generated �on-the-fly,�
concurrent, or even real-time, animation is possible with
the DLL version of Proof.

The Proof DLL provides the following functions:

Function Purpose

ProofDLL Initialization/shutdown
ProofOpenLayout Opens a layout file
ProofSendTraceLine Sends a trace command
ProofSuspend Temporarily suspends Proof
ProofResume Resumes animation
ProofStatus Retrieves status of Proof

The DLL performs all required synchronization

between Proof and the software sending commands. Proof
maintains a small queue of commands, helping to iron out
the peaks and valleys in its own demands for computing
time and those of the driving application. Proof yields time
to the driving application that would otherwise go wasted,
allowing the driving application to get ahead of Proof or to
refill the command queue if the driving application has
fallen behind.

4 GEOMETRY, MOTION, COLOR,

AND RESOLUTION

4.1 Vector-Based Geometry

In the Proof Animation product family, all layout and trace
information is based on vector geometry. Vector-based
descriptions are automatically mapped into pixels to build
a screen image. One of the advantages of this approach is
that layouts can be much larger than a single screen. With
the ability to zoom in or out and pan, larger layouts are
easily navigated to show the overall layout or zoomed in to
whatever level of detail is necessary. Vector-based
geometry also provides the ability to have moving objects
realistically rotate around corners instead of the sliding
effect to which other animation packages are limited.

Another advantage of vector-based geometry is that
most CAD packages are capable of producing standard
vector-based .DXF files. In many cases, a CAD drawing
already exists for the system to be animated. If so, the
193
effort of redrawing an entire layout can be avoided. Proof
Animation�s built-in CAD Import/Export feature provides
the capability to convert industry-standard .DXF files into
Proof Animation layout files, and vice versa. Credibility of
the study is enhanced when viewers see a familiar CAD
drawing of the system integrated into the animation. These
advantages maximize the power of the animation by giving
a user total flexibility on the detail and complexity of the
drawing.

4.2 Smooth Motion

Proof Animation is able to achieve very smooth motion for
large numbers of objects. At all times, Proof maintains two
images, the visible screen image and a hidden image. All
updating is done using the hidden image. When an update is
completed, the hidden and visible images are flipped
instantaneously. Flipping is triggered by the video hard-
ware�s vertical retrace interrupt, which is generated each
time the electron beam painting the screen reaches the lower
right corner of the screen. Vertical retraces occur at a rate of
60-70 times per second. By updating the screen at the hard-
ware�s native screen refresh rate, Proof is able to achieve
very smooth motion of hundreds of objects. Other software
can often sustain refresh rates of only 5-10 updates per
second. The ultimate purpose of an animation is to achieve a
realistic depiction of the system being studied, allowing the
audience to gain confidence in the results of the simulation
study. Objects that move smoothly across the screen are
more realistic than those that jump across the screen.

4.3 Color and Resolution Options

All versions of Proof, including the student version, pro-
vide for operation in 256-color mode in a variety of screen
resolutions. Proof supports 640x400, 640x480, 800x600,
1024x768, and 1280x1024 screen resolutions. Higher
resolutions are available only if sufficient video memory
exists for storing at least two full screen images. For
example, 1024x768 resolution cannot be used on hardware
which has only 1MB of video memory, since at least
1.5MB is required to store two screen images. We use the
phrase �at least,� because the ways in which video driver
software manages video memory may in some instances
impose additional overhead, requiring more video memory
than would normally be expected. 1024x768 resolution is
now commonplace on desktop computers. Most new laptop
computers support at least 800x600 resolution.

Two groups of 32 colors are available for end-user use,
one group for foreground colors and one group for back-
ground colors. When two or more objects or layout elements
overlap, the color which appears on the screen is determined
by making a color comparison. Higher-numbered colors take
precedence over lower-numbered colors. Backdrop colors
have lower color numbers than foreground colors, so

Henriksen

foreground objects will always move over backdrop-colored
objects. If two foreground-colored objects overlap, the
higher color numbers are made visible. The use of color
comparisons makes it possible to easily animate such things
as freeway overpasses and underpasses. Color comparisons
are performed by using MMX instructions, which can
compare eight 8-bit pixels simultaneously.

The remaining colors are dedicated for use by Proof
and Windows. Windows reserves 20 colors for its own use.

5 CREATING ANIMATIONS AND

PRESENTATIONS

5.1 Drawing the Layout

The first step in developing an animation is to draw a
layout. If a CAD drawing of the system is available in the
form of a DXF file, a user can begin by importing the
drawing into Proof, using Proof�s built-in CAD import/
export utility. Once imported, the drawing can be examin-
ed by layer or by line style. Large CAD drawings typically
contain layers and line styles which are inappropriate for
inclusion in an animation layout. For example, one or more
layers may be used for displaying dimensions or annota-
tions. Such layers can be quickly eliminated, as can line
styles used for unwanted hidden lines and center lines. The
resultant drawing is saved as a Proof Animation layout file.
The original .DXF file remains intact.

If a user does not have a CAD drawing or prefers to
draw using a computer, (s)he can use the drawing tools
provided in Proof�s Draw Mode. Although it is mouse-
oriented, Draw Mode also allows keyboard input, so if a
user needs to draw a line of a specific length at an exact
angle, (s)he can enter these specifications numerically. To
help in drawing scaled, accurate layouts, a visible grid is
turned on automatically when Draw Mode is entered. For
additional aid in drawing, Proof has a Snap-to-Grid option.
This option is also on as the default setting. Snap-to-Grid
limits the drawing of layout elements from grid point to
grid point, thus eliminating the chance of small gaps bet-
ween the endpoints of seemingly connected lines. Other
snap options which help draw accurate layouts are Snap-to-
Endpoint which magnetically attracts the mouse cursor to
the ends of lines and arcs, and Snap-to-Tangent which
quickly finds points of tangency between lines and arcs.
All of these options can be turned on or off by the user
during the drawing session.

5.2 Defining Object Classes

Once the background of the animation is drawn, the second
step in developing an animation is to define one or more
object classes. This is done in Class Mode. Objects and
object classes are among the most important constructs in
Proof Animation. A class provides the geometric descrip-
194
tion of the individual objects that move throughout the
animation. The class definition also includes the initial
properties such as physical clearances, color, and speed of
the individual objects. Each animation will usually have a
collection of object classes.

It is helpful to think of an object class as the template
from which the individual objects are made. An individual
object is based on the single geometric description of a
particular object class. There can be an arbitrary number of
objects, such as widgets, in the system at once, but there
need be only one widget object class.

Motion and color-changing commands in the trace
stream operate on objects. The drawn background compo-
nents, produced in Draw Mode, cannot be moved or
changed. If dynamic changes in background elements are
required, the appropriate components must first be defined
as object classes and then created and positioned directly in
Draw Mode. Objects that are created and placed in the lay-
out while the user is drawing the background are called
layout objects. Layout objects enable a user to scale and
position the objects into the layout while having the back-
ground components visible as reference points. While the
animation is running, layout objects can be manipulated
using trace stream commands. For example, if an idle
machine is shown as green and a busy machine as red, the
machine must first be defined as an object class. Objects
from that class can be created and placed as part of the
layout stream, and their color can be changed while the
animation is executing.

5.3 Defining Paths

Proof Animation provides two kinds of motion: absolute
and guided. Absolute motion, specified by the MOVE trace
stream command, causes an object to be moved between
two points. Guided motion always occurs along a fixed
route, called a path. For guided motion, such as travel on
conveyors or along guide wires, the next step in the
animation development is to use Path Mode to define one
or more paths.

Paths are comprised of lines and arcs that represent the
route that the objects will follow. This underlying geometry
must first be drawn using Draw Mode or be imported from a
CAD drawing. The logical path segments are then defined as
a logical superstructure imposed on top of existing lines and
arcs. A single line or arc can be part of one or more paths.
Once defined, paths are saved as part of a layout file.

Using paths is very simple because Proof Animation
does all the work. The most commonly used trace stream
path command is PLACE objectID ON path. Once an
object is placed on a path, it will follow that path until it
comes to rest at the end of the path or until it is PLACEd
elsewhere or DESTROYed. All objects traveling on the
same path can be stopped simultaneously and resume

Henriksen

movement at a later time. Paths provide outstanding anima-
tion power in response to a single trace stream command.

Accumulating paths provide even greater power for
animating paths on which queuing can take place. On accu-
mulating paths, Proof Animation reflects physical reality by
visually queuing objects when bottlenecks occur. This often
makes a simulation model of the system much simpler to
construct, because such queuing need not always be explicit-
ly represented in the model code. Most systems contain
some accumulation. This property can be used to represent
certain types of conveyors, cars at a traffic signal, bank lines,
and more. Paths play an especially important part in trans-
portation, product flow, and material handling animations.

5.4 Writing the Trace Stream

The next step in the animation development is producing
the animation trace stream. Trace streams consist of very
readable ASCII commands. Trace streams are time order-
ed. Groups of one or more animation events take place
instantaneously between TIME commands. Consider the
following portion of a trace stream:

TIME 34.6
CREATE PLANE 1
PLACE 1 ON RUNWAY3
SET 1 SPEED 75
TIME 52.8

It is very easy to visualize the results of these com-

mands. At time 34.6, an object with an ID number of 1 is
created with geometry and properties inherited from class
PLANE. This object will appear on screen at the beginning
of a path named RUNWAY3 and begin moving along the
path. The speed at which object 1 will move is set to 75 units
of distance per unit of simulated time. These units are user-
determined, e.g., feet and seconds. Proof will continue
reading trace stream commands until it reads the TIME 52.8
command, signaling the end of the events that begin at time
34.6. At this point, processing of trace stream commands is
suspended until time 52.8 is reached. The ratio of simulated
time to viewing time is constant, but user-specified.

It is very easy to produce simple trace streams such as
the one shown above with any ASCII editor. However, for
most applications, it is impractical to create trace streams
by hand. Using a simulation model or program to generate
the trace stream is usually the only viable approach. In
order to produce a trace stream, output statements are
inserted into the simulation model to write the appropriate-
ly formatted commands. One should think of this process
as building a model of a model. Just as a model omits
certain details of the system it represents, an animation
omits many details present in a model. One must decide
exactly which details are important enough to warrant their
inclusion in an animation. For each event in the model
195
which needs to be portrayed on the screen, one or more
trace stream commands must be generated. Typically, the
number of points at which trace stream commands must be
generated is quite small. For example, an animation of a
small, but complicated prototype conveyor system shown
at the 1997 Winter Simulation Conference required the
introduction of only 14 statements into the simulation
model to produce a high-quality animation.

The Proof Animation trace stream command set has
been designed to be easily generated. Any language with
the ability to write a formatted ASCII stream is capable of
producing a trace stream.

5.5 Building a Presentation

As an optional final step, one can construct a high-quality
presentation comprised of snippets of animation, slides,
text, and sound. Segments of a presentation can be linked
together using fades, dissolves, and other special effects to
add polish. Presentations are defined by preparing simple
ASCII presentation script (.PSF) files. As of this writing,
one must use a text editor to prepare a .PSF file; however,
a built-in presentation editor is contemplated for future
versions of Proof.

Most presentations are implemented using grouping and
subgrouping constructs which allow viewers of the presenta-
tion to navigate their way through the presentation hierar-
chically. Navigation is accomplished by means of a Win-
dows �Tree View,� as shown in Figure 1. Within a Tree
View, subgroups are prefixed with small boxes containing a
�+� or �-�. Clicking on a �+� box causes a compressed sub-
group to be expanded and changes the �+� to a �-�. Clicking
on a �-� compresses a displayed subgroup into a single line.

Figure 1: Hierarchical Presentation Navigation

Slides used in a presentation can be .BMP files, .PCX
files, or .RTF files. RTF files can be prepared using tools

Henriksen

such as Microsoft WordPad. Using WordPad, one can
quickly prepare textual slides which incorporate color and
a variety of typefaces. Slides can be also be created by
using Proof�s built-in screen-grabber or by using any soft-
ware package capable of exporting industry-standard .BMP
or .PCX bitmap files. There are many such packages avail-
able, and virtually all of them can produce very high-
quality charts, graphs, and slides.

Presentations can be developed so that slides and
animations appear on the screen for a defined amount of
time. The viewer does not have to interact with the com-
puter for the presentation to continue. Presentations can
also be developed to continue once a key or mouse button
is pressed, giving the viewer or presenter ample time to
comment on what is currently on the screen.

When developing the presentation, a user can choose
to highlight areas of interest within the animation by using
different views or sounds (.WAV files) to draw the
viewer�s attention to particular aspects of the animation.

Proof is a well-behaved Windows application. During
the course of a presentation, one can switch out of and
back into Proof, if necessary, to run other applications.
Automatic transitions to/from other applications can be
incorporated into a presentation by using the �syscall�
presentation script command.

6 EXTEND + PROOF

The DLL version of Proof has been used to build animation
extensions to Imagine That�s Extend version 4 and version 5
simulation software. For Extend version 4, only �off-the-
shelf� Proof features were used. No custom modifications
of Proof were required. Imagine That has cleverly exploited
the architecture of Proof to offer a Proof interface for Extend
users that is very user-friendly. For example, Extend is able
to read Proof layout files and extract the names of paths and
object classes defined in the layouts. This is possible
because (1) the syntax of the layout file is openly documen-
ted, and (2) the format of a layout file is simple enough to be
easily read. When an Extend user wishes to place an object
onto a Proof path, (s)he is presented with a menu of path
names that have been read from a layout file. Thus, it is
impossible for the Extend user to construct a Proof
command that refers to a non-existent path.

The Extend version 4 user interface added a Proof
block to Extend. In order to add animation to an Extend
model, users simply inserted Proof blocks at points at
which simulation events requiring animation actions
occurred in a model. In Extend version 5, this interface has
been improved. The dialogs for many Extend blocks now
include an animation tab. When this tab is clicked, options
for adding Proof commands automatically appear. Thus,
with version 5 it�s possible to add Proof commands to an
Extend model without having to insert new blocks in a
model. To further enhance the integration of Extend ver-
sion 5 and Proof, a number of small, Extend-specific modi-
196
fications were made to the standard Proof DLL, resulting
in hand-in-glove integration of the two products.

7 SUMMARY

Wolverine Software�s Proof Animation has set a standard
for maximum power and performance. Proof Animation is
not tied to a specific simulation language or application.
Proof�s features make it an ideal choice for the animation
of systems such as manufacturing and material-flow appli-
cations, computer networks, health care applications, trans-
portation, process reengineering, and many others, while
maintaining ease of use.

An animation benefits a user in every phase of a
simulation study: verification, validation, presentation of
results, and the overall system design process. Proof
Animation�s unmatched features make it the perfect tool
for each of these phases regardless of the application.

REFERENCES

Crain, R.C. 1997. Simulation using GPSS/H. In Proceed-

ings of the 1997 Winter Simulation Conference, eds. S.
Andradóttir, K. Healy, D. Withers, B. Nelson.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Earle, N.J. and Henriksen, J.O. 1994. Proof animation:
reaching new heights in animation. Proceedings of the
1994 Winter Simulation Conference, eds. J. Tew, S.
Manivannan, D. Sadowski, and A. Seila, 509-516
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Henriksen, J.O. 1998. Stretching the Boundaries of
Simulation Software. In Proceedings of the 1998
Winter Simulation Conference, eds. D. Madeiros, E.
Watson, M. Manivannan, J. Carson. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Wolverine Software. 1995. Using Proof Animation
(Second Edition). Annandale, Virginia: Wolverine
Software Corporation.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of the
first version of GPSS/H, of Proof Animation, and of SLX.
He is a frequent contributor to the literature on simulation
and has presented many papers at the Winter Simulation
Conference. Mr. Henriksen has served as the Business
Chair and General Chair of past Winter Simulation
Conferences. He has also served on the Board of Directors
of the conference as the ACM/SIGSIM representative. He
can be reached via e-mail at: <mail@
wolverinesoftware.com>.

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

