
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

SLX: THE X IS FOR EXTENSIBILITY

James O. Henriksen

Wolverine Software Corporation
2111 Eisenhower Avenue, Suite 404

Alexandria, VA 22314-4679, U.S.A.

ABSTRACT

SLX, Simulation Language with Extensibility, is the
newest member in Wolverine Software�s family of simula-
tion and animation software. SLX features unique extensi-
bility mechanisms that allow users to tailor and extend
SLX�s modeling capabilities. There are two advantages to
extensibility. First, it ensures virtually unlimited adaptabil-
ity. You�ll never get �stuck� with a problem you can�t
solve with SLX. Second, extensibility allows packaging the
use of highly efficient, low-level primitives in such a way
that cumbersome details are hidden. Problems are descri-
bed using nouns and verbs appropriate to the application.
The tools provided for extending SLX include many of the
tools used to develop SLX itself; however, these tools are
by no means intended to be used exclusively by language
developers. They are �user-level� tools that can be master-
ed by anyone. This paper presents an overview of SLX.
Earlier papers (Henriksen 1997, 1998) presented the
development of a conveyor modeling package in SLX, and
example of how SLX has been coupled with other
software, respectively.

1 INTRODUCTION

The most important characteristic of SLX is its layered,
inverted pyramidal architecture, shown in Figure 1.

Packages for Non-Simulationists

Application-Specific Packages

GPSS/H-Like Languages

Kernel Extensions

C-Like Kernel

Figure 1: The SLX Pyramid

18
Traditional language-based simulation tools fall in the
middle of the SLX pyramidal hierarchy. As is evident in
Figure 1, SLX�s layers extend both below and above the
focus of traditional simulation languages.

The bottom layer of SLX is a C-like kernel language.
Constructs of the C language which are error-prone or
intended primarily for systems programmers were exclud-
ed from or restricted in the SLX kernel. Conversely, dis-
crete event simulation primitives such as parallelism,
scheduling, and synchronization, not found in C, were
added to the SLX kernel, using C-like syntax. SLX�s
kernel is a small, but very powerful language for construc-
ting simulations at a �nuts-and-bolts� level. It provides the
underlying support for higher levels in the pyramid.

The top layers of SLX extend above the focus of tradi-
tional simulation languages. SLX�s extensibility mechan-
isms can be used to develop dialects of SLX in which
nouns and verbs are application-specific.

The efficacy of SLX�s layered approach is hinges on
four key factors:

A. SLX�s layers are well-conceived. In each layer,

we have taken a minimalist-generalist approach,
providing only those capabilities that are absolu-
tely necessary, but implementing them in as gene-
ral a manner as possible. Consider the design of
SLX�s kernel. We went to lengths to minimize the
�footprint� of the kernel. As a result of our
approach, the SLX kernel is surprisingly small
collection of precisely-defined, very general
primitives which can support a wide variety of
higher-level modeling approaches. For example,
SLX�s kernel-level wait until statement allows
easy specification of state-based events, e.g.,
�wait until State A and State B or State C.� State-
based events are the foundation of a variety of
world views, e.g., transaction flow, process inter-
action, activity scan, and Petri nets.

B. SLX�s layers are properly separated. Many
modeling tools provide multiple layers, but often
these tools exhibit wide gulfs between their
3

Henriksen

layers, leading to jarring transitions as one moves
from layer to layer. For example, a modeling
package might provide flowchart-oriented build-
ing blocks as its primary modeling paradigm, but
also provide for �dropping down� into procedural
languages such as C or Visual Basic. The problem
with this approach is that there are only two
layers, and they�re too far apart. To be able to add
C or Visual Basic extensions to such software,
one must first become familiar with many details
of the software�s implementation. Even worse,
virtually none of the error checking and other
safeguards provided at the higher level are avail-
able in C or Visual Basic. SLX users almost never
find it necessary to drop down to a lower-level,
more powerful language, because the SLX kernel
language has an expressiveness approaching that
of C. In addition, the SLX kernel language
includes complete checking to prevent �shoot
yourself in the foot� errors such as referencing
beyond the end of an array and using invalid
pointer variables, both of which are all too
familiar to C programmers.

C. SLX�s mechanisms for moving from layer to layer
are very powerful. These mechanisms are abstrac-
tion mechanisms. Higher levels provide more
abstract descriptions than a lower levels; i.e.,
lower-level implementation details are hidden at
the upper levels. SLX provides both data and pro-
cedural abstraction mechanisms. Like C, SLX
provides the ability to define new data types, and
to build objects which are aggregations of data
types. The procedural abstraction mechanisms of
SLX, which go well beyond C, are extremely
powerful. SLX provides a macro language and a
statement definition capability which allows
introduction of new statements into SLX. (The
SLX-hosted implementation of GPSS/H makes
heavy use of the statement definition feature.) The
definitions of macros and statements can contain
extensive logic, including conditional expansion,
looping, optional arguments, lists of arguments,
etc. In fact, such definitions are actually compiled
by SLX, allowing use of virtually all kernel-level
statements. Macros and statement definitions offer
far more than simple text substitution.

D. SLX has excellent mechanisms for coupling SLX
programs with other software. For example, if you
have a collection of C functions you�d like to call
from SLX, all you need to do is (1) place them
into a Windows Dynamic Link Library (DLL),
and (2) provide prototypes which tell SLX about
the arguments and values returned by your func-
tions. SLX can automatically generate C/C++
header files (.h files) which define SLX objects
184
using C/C++ syntax. Thus the most error-prone
step of establishing a cross-language interface,
achieving exact agreement on the data structures
used, has been automated. SLX�s DLL interface is
described in Section 4.1.

(Henriksen 1997) discusses how SLX was used to

build a software package for modeling conveyor systems.
(Brill and Whitney 1997) presents an example of the use of
SLX for datailed traffic modeling. Both references provide
examples of the exploitation of SLX�s layered architecture.

In the sections which follow, SLX�s extensibility me-
chanisms are illustrated; selected features of the SLX kernel
are presented; and examples are presented which describe
the coupling of SLX and other software. Finally, the ramifi-
cations of SLX on the teaching of simulation are discussed.

2 EXTENSIBILITY FEATURES

SLX is an extensible platform on which a wide variety of
higher level simulation applications can be built. In this
section we provide an overview of how the extensibility
mechanisms work.

2.1 Unbounded, Executable Compiler Extensions

In a traditional language compiler, elements of a program
(referred to below as modules) are translated into some
form (referred to below as object code) which can be
executed by a computer or interpreted by an interpreter
program. The architecture of a traditional compiler is
shown in Figure 2.

 Source Code Object Code

 Module A A�
 Traditional
 Module B B�
 Compiler
 Module C C�

Figure 2: Traditional Compiler Architecture

In SLX, several source language constructs can be
used to extend the SLX compiler. This architecture is
shown in Figure 3.

When the SLX compiler encounters the definition of a
compiler extension, it sets aside its current work and
processes the extension in its entirety. When the compiler
resumes its work, the compiled extension is available for
use throughout the rest of the compilation. In Figure 3,
Module C can make use of extensions defined in Extension
B. This process can be used repeatedly; i.e., the extended
compiler can be further extended, without bound.

Henriksen

 Source Code Object Code

 Module A A�

SLX
 Extension B Compiler

B�
 Module C C�

Figure 3: SLX Compiler Architecture

2.2 SLX�s Statement Definition Facility

One of the most commonly used forms of SLX compiler
extensions is the SLX statement definition facility. This
facility allows the introduction of new statements into the
SLX language. Such statements are similar to macros in
traditional programming languages, except that they
operate at the statement level, rather than at the expression
level, as is commonly the case.

There are four major components of a statement
definition:

A. a prototype which specifies the syntax of the
statement (informally, �how it looks�);

B. optional logic and looping within the definition,
responding to the presence, absence, and other
characteristics of statement components; and

C. one or more expand statements which inject
�generated� text into the source stream seen by
the SLX compiler.

D. optional diagnose statements which issue mean-
ingful messages when errors in statement usage
are made.

SLX statement prototypes are described using a meta-

language which permits specification of the following
kinds of statement components:

A. User-supplied expressions
B. User-defined keywords
C. Optional components
D. Repeated components; e.g., lists of items
E. Punctuation characters

Perhaps the most striking feature of all of SLX is the

vehicle by which the logic, looping, expansion, and issuance
of diagnostics are expressed. Most languages which have
macros employ special sublanguages for defining macros.
Typically such sublanguages are radically different from,
and weaker in expressive power than, their host languages.
For example, #if, #else, and #endif in the C language offer
very weak capabilities for conditional expansion of macros,
and their syntax differs from that of C itself. In SLX, there is
no separate sublanguage used for statement definitions;
185
rather, the SLX language itself is used. The only limitation is
that simulation constructs such as time delays, fork, and wait
until, which have no meaningful interpretation during
program compilation, cannot be used.

The ability to use (almost) all of the SLX language in
statement definitions permits tremendous flexibility and
complexity in statement definitions. For example, a
statement definition can read information from a file and
store the information in user-defined, compile-time data
structures which are interrogated and manipulated by other
statement definitions.

In addition to statement definitions, SLX supports
more traditional macros and precursor modules. Precursor
modules are �large� SLX compiler extensions. They are
not limited to just macros and statement definitions; rather,
they can contain a host of functions and data which are to
be made available at compile-time, run-time, or both.
Finally, note that all three forms of SLX compiler
extensions (statement definitions, macros, and precursor
modules) are compiled into executable machine
instructions by SLX. Thus, SLX fulfills the promise of
unbounded, executable user extension of SLX itself.

3 SLX KERNEL FEATURES

The number of primitives required to support simulation is
surprisingly small. Implementing some of these primitives in
a general form, however, can be very difficult. Features such
as SLX�s generalized wait until are extremely difficult to
implement. Not surprisingly, this feature has rarely appeared
in other simulation software. Paradoxically, some of the
features which are the most difficult to implement are the
most easily understood. In the remainder of this section, we
will present some representative features, to illustrate the
functionality, ease-of-of-use, and ease-of-learning of SLX.

3.1 Objects and Pointers to Objects

In SLX, two kinds of objects are used to represent
components of systems being modeled. Passive objects are
used for modeling entities which have no �executable�
behavior. In a model of a factory, widgets being produced
would be modeled as passive objects, since they have no
self-determined, executable behavior. Their behavior
results from being acted upon by other objects. (For those
readers familiar with C, passive objects are very much like
C structs.) Active objects have executable, at least partially
self-determined behavior patterns. In a model of a factory,
a foreman would be modeled as an active object.

Some entities can be modeled either as active objects
or passive objects. For example, a simple server with a
FIFO queue can be modeled as a passive object. Its
behavior depends solely on the requests made for it by
active objects. (This is the way Facilities work in GPSS/H.)
For more complicated servers, an active object may be

Henriksen

more appropriate. Consider a butcher in a model of a
supermarket. In a simple queueing model, the butcher can
be represented as a passive object, responding to requests
for service one customer at a time. In a more realistic
model, a butcher would have a more complex behavior
pattern, cycling through activities of cutting meat, arrang-
ing products in refrigerators, interacting with the deli
department, taking breaks, etc. Such behavior would re-
quire modeling the butcher as an active object.

Objects are created by using the new operator, which
returns a pointer to the newly created object. When an
activate operator is applied to a pointer to an object, a puck
(defined in Section 3.2) is created for the object and placed
on the Current Events Chain; i.e., the puck is placed in a
ready-to-execute state. The new and activate operators are
almost always used in a single statement:

activate new butcher;

The manipulation of pucks is the basic mechanism by
which a collection of objects experiences events over time.
By rapidly switching from puck to puck, the SLX simula-
tor creates the illusion of parallelism among the activities
of the objects to which the pucks are attached. Scheduled
time delays, e.g., service times, and state-based delays,
e.g., waiting for a server to become available, are opera-
tions performed on pucks.

3.2 What�s a Puck?

The original version of GPSS introduced the transaction-
flow modeling world-view in 1962. In the transaction-flow
world view, attention is focused on units of traffic, called
transactions, which flow through the block diagram repre-
sentation of a system, competing for system resources. In
the 36-year period since GPSS was introduced, a large
number of other languages have implemented variations of
the transaction-flow world view. Implementation of this
world view, and the terminology used to describe it vary
widely (Schriber and Brunner 1997).

In traditional transaction-flow languages, a transaction
contains two types of data, user-defined data particular to the
unit of traffic, and �scheduling� data, needed to keep track of
the state and location (current block in the block diagram) of
the unit of traffic in a model. Figure 4 illustrates this
architecture. In a GPSS model of a supermarket, a transac-
tion representing a shopper would have attributes such as
probabilities of visiting various departments, e.g., the deli,
expected number of items to be purchased in each depart-
ment, etc. Scheduling data would include priority, next
scheduled event time, next model statement to be executed,
etc. Scheduling data includes values which can be modified
by a program, e.g., transaction priority, and other values
which are �internal� values maintained by run-time support
routines for the simulation language. All user-defined
transaction data can be both read and written by user code.
18
In SLX the functionality of a transaction is broken
down into independent lower-level components, and there
are no transactions, per se. The role of a transaction�s user-
defined data is played by an instance of an SLX user-
defined object class. The role of a transaction�s scheduling
data is played by an SLX puck. Each SLX object created is
an instance of its object class and has its own copy of the
object class�s data. The statements which are executed by
the object are contained in the actions property of the
object�s class and any lower-level procedures invoked by
the actions property. In SLX, it is possible to have more
than one puck for a given object. An object instance for
which there are two pucks is shown in Figure 5.

3.3 Inter-Object and Intra-Object Parallelism

In SLX, parallelism can be modeled in two ways: as inter-
actions among objects (inter-object parallelism) and as
multiple actions performed on behalf of the same object
(intra-object parallelism.) Inter-object parallelism, in which
there is a 1:1 relationship between objects and pucks, is
functionally equivalent to transaction flow. Intra-object
parallelism is achieved by creating more than one puck for
an active object. This is accomplished by means of a fork
statement. Suppose that in developing a model of a factory,
we need to model a complicated machine which is capable
of performing three operations simultaneously. Some com-
ponents of the machine are common to all three operations.
The data describing such components must be easily
accessible within the portions of the model for each of the
three operations. Figure 6 shows how an active object can
be used to model such a machine, using fork statements.

Each fork statement creates a new puck for the
machine object. The offspring puck is placed on the Cur-
rent Events Chain, poised to execute the actions within the
braces (�{�}�) following the fork statement. The parent
puck continues its execution with the next statement. After
the second fork is executed, the machine object has three
pucks, each of which has direct access to data common to
the entire machine, and each of which is independently
scheduled. Thus our active machine can do three things at
once.

Most transaction-flow simulation languages offer only
inter-object parallelism. Most also offer some form of
�cloning� operation which is superficially similar to SLX�s
fork statement. When such an operation is performed, a
new transaction is created. The new transaction, by
definition, has its own scheduling data, and usually the
user-defined attributes of the parent transaction are copied
into the offspring (clone). A new transaction is another
complete instance of Figure 4. SLX�s fork statement
creates a new puck (scheduling data only) which shares the
user-defined attributes with other pucks, as shown in
Figure 5.

6

riksen

Hen

Scheduling
Data

User-Defined
Attribute Data

 Block

 Current Block
 Block

 Block

Figure 4: Traditional Transaction Architecture

 Puck 1 Object Instance Data

 class x
 {
 Puck 2 actions
 {
 statement
 statement
 statement
 }
 };

Figure 5: An Active Object with Two Pucks

class machine
 {
 �Declarations for variables local to the machine�

 actions
 {
 fork
 {
 �actions for operation 1�
 }

 fork
 {
 �actions for operation 2�
 }

 �actions for operation 3�
 }
 };

Figure 6: Intra-Object Parallelism Using Forks

If a language has only a transaction-cloning verb and no

fork verb, modeling system components such as the com-
plicated machine discussed above is much more difficult,
although certainly not impossible. Consider, for example,
18
GPSS/H�s SPLIT block, which creates a clone of an entire
transaction. We could use SPLIT blocks to model our
machine. The difficulty arises in choosing where to store the
data that must be shared by all three transactions. If multiple
GPSS/H transactions need to share a single copy of data
describing a component of a system, the data must be stored
in global variables. (In GPSS/H, transactions can easily
change their own attributes, but changing the attributes of
other transactions is difficult. Thus, storing the shared data
in any given transaction is impractical.) If only one such
machine exists, storing the shared data in global variables is
easy. If there is more than one such machine, separate
collections of shared global variables must be used, one
collection for each such machine. If the collection of
machines does not change during model execution, the
shared data can be statically allocated. However, if the
collection of machines changes during model execution,
some form of dynamic data management must be implemen-
ted by the modeler, since GPSS/H global variables are
statically allocated at the start of model execution; i.e., they
cannot be created and destroyed during model execution.

The fork statement is an extremely handy modeling
tool. In complex modeling situations, intra-object parallel-
ism can be indispensable. The use of multiple pucks offers
easy shared access to object attributes among all the pucks
which belong to any given instance of the object, while
preventing access by pucks which belong to a different
instance.

3.4 SLX�s Generalized Wait Until

As units of traffic flow through a model, they are subject to
two forms of delay, scheduled delays, and state-based
delays. In SLX, state-based delays are modeled using
control variables and the wait until statement. The keyword
�control� is used as a prefix on SLX variable declarations:

control integer count;
control boolean repair_completed;

The �control� keyword tells the SLX compiler that at

each point at which the value of the control variable is
changed, a check must be made to see whether any pucks
in the model are currently waiting for the variable to attain
a particular value or range of values. Such waits are
described using the wait until statement:

wait until (count > 10);
wait until (repair_completed);

Compound conditions are allowed as well:

wait until (count >= 10

or repair_completed
and not repairman_busy);

7

Henriksen

SLX also supports indefinite (user-managed) waits. Three
steps are required to implement an indefinite wait. First,
the puck which is going to wait must be made accessible to
other pucks. This is usually done by placing the puck into a
set. Second, the puck executes a wait statement with no
�until� clause. Finally, at a subsequent point in simulated
time, another puck executes a reactivate statement to
reactivate the waiting puck.

Wait until expressions can include a time-based
condition.

optimistic_event_time = �some expression�

wait until (time == optimistic_event_time
 or �some other condtion�);

4 SLX AS A COMPONENT OF YOUR WORLD

Although SLX is extremely powerful and flexible, there
are situations in which it is convenient to use other
software tools in conjunction with SLX. For example, if
you have a pre-existing collection of C functions, it may be
very handy to be able to call them from SLX. The
remainder of this section provides examples of how SLX
can be integrated with the other tools in your world.

4.1 SLX�s DLL Interface

SLX has very powerful facilities for calling C/C++
functions which are contained in a DLL (dynamic link
library). To call functions in a DLL, you must supply to
SLX a function prototype which defines the arguments (if
any) of each function, the values returned (if any), and the
name of the DLL file. The SLX development environment
has a menu item which can be clicked to generate a
C/C++-compatible .h file which maps all SLX data passed
to and from DLL functions into C syntax. SLX objects
contain hidden elements which are used for error detection,
debugging and other internal bookkeeping functions. If an
SLX object is to be manipulated by a C function, the
hidden information must be taken into account when
constructing an analagous C/C++ struct definition.
Accordingly, object elements for which there is a direct
counterpart in C/C++ are described using straightforward
declarations in a generated .h file, and hidden elements are
declared as arrays of bytes with the dimension chosen to
�pad� the C/C++ struct to achieve agreement with SLX.

When SLX detects the first call of any function in a
given DLL, it checks to see if the DLL has a function
named �connect.� If so, this function is called first, and
SLX passes it a pointer to a vector of pointers to callback
functions inside SLX. These functions can be used to
perform functions that are risky or impossible to perform
from C/C++ subsequently called DLL functions. At the
completion of execution, each DLL used is interrogated for
the existence of a �disconnect� function. Any such
18
functions found are called by SLX prior to SLX program
termination. This allows DLLs to perform any final
�cleanup� operations, e.g., closing open files.

4.2 SLX-Proof Interface

Wolverine Software has developed an interface between
SLX and Proof Animation (Henriksen 1998) using SLX�s
statement definition facility. Proof requires an input stream
of ASCII commands that create and destroy objects on the
screen, move them, change their colors, etc. A small, but
powerful collection of commands is used for this purpose.
SLX statements have been defined for generating the com-
monly used Proof commands and command options. The
syntax of the SLX statements matches that of the corre-
sponding Proof commands. For example, to generate a

 place 27 on loop

Proof command, one might write

 PA_place objectID on �loop�;

In the example shown above, �27� and �loop� are variable
components of the Proof place on command. The SLX
code supplies �27� as the value of a variable named
objectID and supplies �loop� as a string constant.

The current version of the SLX-Proof interface writes
Proof command streams to files. A DLL version of Proof is
under development. When this version is completed, the
statement definitions in the SLX-Proof interface will be
augmented to allow the transmission of commands directly
to Proof.dll without using files. This will make it possible
to run a simulation and animation concurrently.

A third party has developed an SLX package that is
capable of reading entire Proof layout files, storing them in
SLX data structures, and rewriting the layout files. Thus
geometric characteristics of layouts drawn or modified
using Proof are accessible to SLX programs. In addition,
Proof layout files can be modified by an SLX program.

4.3 SLX-Prime Interface

Prime (Wagner and Wilson 1997) is a software package for
fitting Bézier-curve-based probability distributions to data
observations. Bézier curves can be fitted to data using a
variety of automated algorithms and by visual
manipulation of the control points which define the Bézier
curve. Thus it is possible to take a fitted curve and move
the mass of the probability distribution around. For
example, one might feel that in a real system, data might be
a little more skewed to the right than collected experimen-
tal data would suggest. Visual manipulation of the distribu-
tion makes this easy to do, provided that the resultant curve
can be easily incorporated into a random variate generator
in a simulation package.
8

Henriksen

The output of Prime is a collection of Bézier control
points stored in a file in a straightforward ASCII format. In
cooperation with the author of Prime, Wolverine Software
developed several statement definitions which allow direct
incorporation of Prime-generated curves into SLX models.
The �Bézier_data� statement reads a Prime-generated file
(at compile time!) and deposits the defined control points
into an SLX object. This object can be subsequently used
for generating random variates from the fitted distribution.

SLX and Prime work very well together, The initial
integration of the two packages was accomplished in under
24 hours. After the initial integration, a highly tuned
variate generator was written in assembly language, to
achieve maximum efficiency in variate generation. This
required another day�s work.

4.4 SLX-HLA Interface

SLX�s DLL interface has been used to connect SLX
models with the run-time infrastructure (RTI) of HLA
(DoD 1997), DoD�s High Level Architecture for distrib-
uted simulations (Strassburger, Schulze, Klein, and
Henriksen 1998). Integration was accomplished by
building C++ wrapper functions which sit between SLX
and the RTI. The integration of SLX and HLA is highly
synergistic. It brings to SLX an architecture which prom-
ises to achieve widespread adoption for distributed, inter-
operable simulations. For people who know HLA and want
to develop such simulations, SLX provides a powerful
alternative to developing simulations from the ground up in
a high-level language such as C++ or ADA.

5 TEACHING SLX

The architecture of SLX has potentially profound
implications for teaching simulation. The usual approach to
teaching simulation is to �dive in� at an intermediate level
by providing an easily understood collection of building
blocks and exploring some well-motivated examples.
Students of simulation who tackle real-world applications
sooner or later reach a point at which they have to go back
and build a foundation under their knowledge; i.e., they
have to learn how things really work (Schriber and Brunner
1997). Depending on exactly when the foundation-building
process takes place, students may have already developed
usage patterns which ignore some of a language�s capabili-
ties and misuse others. For example, self-taught users of
GPSS/H will almost always favor an �active-object,
passive-server� world-view, even though the language is
quite capable of expressing an �active-server, passive
object� world-view. For users of very high-level simulation
packages, especially graphically based model-builders, the
foundation-building may never take place. Whether this is
good or bad is a matter of religion. Advocates of the very
high-level approach think this is good, while their more
18
conservative counterparts are appalled by the danger of
doing too much with too little knowledge.

In SLX, the number of kernel constructs which direct-
ly support simulation is very small. Depending on what
one counts as a simulation feature, the number ranges from
roughly 8 to 12. Our experience with GPSS/H has proven
that this is a small enough number of building blocks for
beginners to readily absorb. For example, we have seen
many times that so-called �9-block GPSS/H� is easily mas-
tered and quite powerful.

However, even with 9-block GPSS/H, students quickly
reach a point at which foundation-building is necessary.
With SLX, a bottom-up approach is feasible. For example,
consider modeling a barbershop, a traditional introductory
one-line, single-server queuing model. In a beginner�s
model, the barbershop runs from 9:00-5:00, at which time it
summarily shuts down, ignoring the customer (if any) who is
in the barber chair at that time and ignoring customers (if
any) in the queue. In a second model, more realistic shut-
down conditions can be implemented. At 5:00 the door to
the shop is closed, and the barber does not leave until the
current customer and all customers in the queue at 5:00 have
been served. In SLX, this condition is easily expressed as a
compound �wait until� condition, e.g., �wait until (time >=
5:00 and queue empty and server idle).� Thus, SLX�s wait
until feature is well-motivated and easily understood at a
very early stage of model building. In SLX, wait until is the
foundation of all forms of state-based events. Thus mastery
of wait until yields enormous benefits.

SLX kernel-level simulation primitives are exposed,
i.e., they can be used directly. In most simulation software,
primitives are bound into impenetrable higher-level
features. For example, in GPSS/H there are at least five
building blocks which internally utilize the equivalent of
wait until. Some of these blocks have many external
variations. Thus, students of GPSS/H must master the
external variations and learn how the underlying wait until
mechanism works. In SLX, it�s easier to learn the general
mechanism first. Wait until is both an SLX primitive and a
fundamental modeling concept. Thus, by teaching/learning
wait until, we can kill two birds with one stone.

The hierarchical architecture of SLX is mirrored by
Windows-based tools in the SLX model development /
debugging environment. Windows can be opened to
explore every aspect of puck management. Students of
SLX have the ability to see how SLX works.

5 CONCLUSIONS

SLX is a well-conceived, layered simulation system. Users
of the upper layers can ignore lower layers. However, if
their requirements are not met at a given level, they can
move down one or more levels, without exerting
extraordinary effort and without losing protection against
potentially disastrous errors. Developers, who are used to
9

Henriksen

working down among the lower layers, have at their
disposal powerful extensibility mechanisms for building
higher layers for use by themselves or others. SLX has
been used in a variety of very large, complex applications.
Its extensibility mechanisms have been heavily exploited.
SLX is easily integrated with other simulation tools,
including HLA. If you�re teaching or learning simulation,
or developing simulations, SLX can be an invaluable
component of your world. SLX stretches the boundaries of
simulation software.

REFERENCES

Brill, J.C and D.E. Whitney. Development and Application

of an Intermodal Mass Transit Simulation with
Detailed Traffic Modeling. In Proceedings of the 1997
Winter Simulation Conference, ed. S Andradóttir, K.J.
Healy, D.H. Withers, and B.L. Nelson. 1230-1235.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Crain, R.C. Simulation With GPSS/H. In Proceedings of
the 1998 Winter Simulation Conference, ed. Madeiros,
D.J., E. Watson, M.S. Manivannan, and J. Carson.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Department of Defense (DoD). High Level Architecture
Interface Specification Version 1.2 (1997). Available
on-line at <http://hla.dmso.mil>.

Henriksen, J.O., 1998 Windows-Based Animation with
Proof. In Proceedings of the 1998 Winter Simulation
Conference, ed. Madeiros, D.J., E. Watson, M.S.
Manivannan, and J. Carson. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Henriksen, J.O., 1997 An Introduction to SLX. In Proceed-
ings of the 1997 Winter Simulation Conference, ed. S
Andradóttir, K.J. Healy, D.H. Withers, and B.L.
Nelson. 559-566. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Henriksen, J.O. 1996. An Introduction to SLX. In
Proceedings of the 1996 Winter Simulation
Conference, eds. J. Charnes, D. Moore, D. Brunner, J.
Swain. 468-475. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Henriksen, J.O., 1995. An Introduction to SLX. In
Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos. 502-509. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Schriber, T.J. and D.T. Brunner. Inside Discrete-Event
Simulation Software: How it Works and Why It
Matters. In Proceedings of the 1997 Winter Simulation
Conference, ed. S Andradóttir, K.J. Healy, D.H.
Withers, and B.L. Nelson. 14-22. Institute of Electrical
and Electronics Engineers, Piscataway, New Jersey.
190
Strassburger, S., T. Schulze, U. Klein, and J.O. Henriksen.
1998. Internet-Based Simulation Using Off-the-Shelf
Simulation Tools and HLA. In Proceedings of the
1998 Winter Simulation Conference, ed. Madeiros,
D.J., E. Watson, M.S. Manivannan, and J. Carson.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of the
first version of GPSS/H, of Proof Animation, and of SLX.
He is a frequent contributor to the literature on simulation
and has presented many papers at the Winter Simulation
Conference. Mr. Henriksen has served as the Business
Chair and General Chair of past Winter Simulation
Conferences. He has also served on the Board of Directors
of the conference as the ACM/SIGSIM representative. He
can be reached via e-mail at: <mail@
wolverinesoftware.com>.

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

