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ABSTRACT 
 
SLX, Simulation Language with Extensibility, is the 
newest member in Wolverine Software�s family of simula-
tion and animation software. SLX features unique extensi-
bility mechanisms that allow users to tailor and extend 
SLX�s modeling capabilities. There are two advantages to 
extensibility. First, it ensures virtually unlimited adaptabil-
ity. You�ll never get �stuck� with a problem you can�t 
solve with SLX. Second, extensibility allows packaging the 
use of highly efficient, low-level primitives in such a way 
that cumbersome details are hidden. Problems are descri-
bed using nouns and verbs appropriate to the application. 
The tools provided for extending SLX include many of the 
tools used to develop SLX itself; however, these tools are 
by no means intended to be used exclusively by language 
developers. They are �user-level� tools that can be master-
ed by anyone. This paper presents an overview of SLX. 
Earlier papers (Henriksen 1997, 1998) presented the 
development of a conveyor modeling package in SLX, and 
example of how SLX has been coupled with other 
software, respectively. 
 
1  INTRODUCTION 
 
The most important characteristic of SLX is its layered, 
inverted pyramidal architecture, shown in Figure 1. 
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Application-Specific Packages 
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Kernel Extensions 

 
C-Like Kernel 

 
 

Figure 1:  The SLX Pyramid 
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Traditional language-based simulation tools fall in the 
middle of the SLX pyramidal hierarchy. As is evident in 
Figure 1, SLX�s layers extend both below and above the 
focus of traditional simulation languages. 

The bottom layer of SLX is a C-like kernel language. 
Constructs of the C language which are error-prone or 
intended primarily for systems programmers were exclud-
ed from or restricted in the SLX kernel. Conversely, dis-
crete event simulation primitives such as parallelism, 
scheduling, and synchronization, not found in C, were 
added to the SLX kernel, using C-like syntax. SLX�s 
kernel is a small, but very powerful language for construc-
ting simulations at a �nuts-and-bolts� level. It provides the 
underlying support for higher levels in the pyramid. 

The top layers of SLX extend above the focus of tradi-
tional simulation languages. SLX�s extensibility mechan-
isms can be used to develop dialects of SLX in which 
nouns and verbs are application-specific. 

The efficacy of SLX�s layered approach is hinges on 
four key factors: 

 
A.  SLX�s layers are well-conceived. In each layer, 

we have taken a minimalist-generalist approach, 
providing only those capabilities that are absolu-
tely necessary, but implementing them in as gene-
ral a manner as possible. Consider the design of 
SLX�s kernel. We went to lengths to minimize the 
�footprint� of the kernel. As a result of our 
approach, the SLX kernel is surprisingly small 
collection of precisely-defined, very general 
primitives which can support a wide variety of 
higher-level modeling approaches. For example, 
SLX�s kernel-level wait until statement allows 
easy specification of state-based events, e.g., 
�wait until State A and State B or State C.� State-
based events are the foundation of a variety of 
world views, e.g., transaction flow, process inter-
action, activity scan, and Petri nets.  

B. SLX�s layers are properly separated. Many  
modeling tools provide multiple layers, but often 
these tools exhibit wide gulfs between their 
3
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layers, leading to jarring transitions as one moves 
from layer to layer. For example, a modeling 
package might provide flowchart-oriented build-
ing blocks as its primary modeling paradigm, but 
also provide for �dropping down� into procedural 
languages such as C or Visual Basic. The problem 
with this approach is that there are only two 
layers, and they�re too far apart. To be able to add 
C or Visual Basic extensions to such software, 
one must first become familiar with many details 
of the software�s implementation. Even worse, 
virtually none of the error checking and other 
safeguards provided at the higher level are avail-
able in C or Visual Basic. SLX users almost never 
find it necessary to drop down to a lower-level, 
more powerful language, because the SLX kernel 
language has an expressiveness approaching that 
of C. In addition, the SLX kernel language 
includes complete checking to prevent �shoot 
yourself in the foot� errors such as referencing 
beyond the end of an array and using invalid 
pointer variables, both of which are all too 
familiar to C programmers. 

C.  SLX�s mechanisms for moving from layer to layer 
are very powerful. These mechanisms are abstrac-
tion mechanisms. Higher levels provide more 
abstract descriptions than a lower levels; i.e., 
lower-level implementation details are hidden at 
the upper levels. SLX provides both data and pro-
cedural abstraction mechanisms. Like C, SLX 
provides the ability to define new data types, and 
to build objects which are aggregations of data 
types. The procedural abstraction mechanisms of 
SLX, which go well beyond C, are extremely 
powerful. SLX provides a macro language and a 
statement definition capability which allows 
introduction of new statements into SLX. (The 
SLX-hosted implementation of GPSS/H makes 
heavy use of the statement definition feature.) The 
definitions of macros and statements can contain 
extensive logic, including conditional expansion, 
looping, optional arguments, lists of arguments, 
etc. In fact, such definitions are actually compiled 
by SLX, allowing use of virtually all kernel-level 
statements. Macros and statement definitions offer 
far more than simple text substitution. 

D.  SLX has excellent mechanisms for coupling SLX 
programs with other software. For example, if you 
have a collection of C functions you�d like to call 
from SLX, all you need to do is (1) place them 
into a Windows Dynamic Link Library (DLL), 
and (2) provide prototypes which tell SLX about 
the arguments and values returned by your func-
tions. SLX can automatically generate C/C++ 
header files (.h files) which define SLX objects 
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using C/C++ syntax. Thus the most error-prone 
step of establishing a cross-language interface, 
achieving exact agreement on the data structures 
used, has been automated. SLX�s DLL interface is 
described in Section 4.1. 

 
(Henriksen 1997) discusses how SLX was used to 

build a software package for modeling conveyor systems. 
(Brill and Whitney 1997) presents an example of the use of 
SLX for datailed traffic modeling. Both references provide 
examples of the exploitation of SLX�s layered architecture. 

In the sections which follow, SLX�s extensibility me-
chanisms are illustrated; selected features of the SLX kernel 
are presented; and examples are presented which describe 
the coupling of SLX and other software. Finally, the ramifi-
cations of SLX on the teaching of simulation are discussed. 

 
2  EXTENSIBILITY FEATURES 
 
SLX is an extensible platform on which a wide variety of 
higher level simulation applications can be built. In this 
section we provide an overview of how the extensibility 
mechanisms work. 
 
2.1  Unbounded, Executable Compiler Extensions 
 
In a traditional language compiler, elements of a program 
(referred to below as modules) are translated into some 
form (referred to below as object code) which can be 
executed by a computer or interpreted by an interpreter 
program. The architecture of a traditional compiler is 
shown in Figure 2. 
 
      Source Code              Object Code 
 
        Module A         A� 
                          Traditional 
        Module B         B� 
                           Compiler 
        Module C         C� 
 
 

Figure 2:  Traditional Compiler Architecture 
 

In SLX, several source language constructs can be 
used to extend the SLX compiler. This architecture is 
shown in Figure 3. 

When the SLX compiler encounters the definition of a 
compiler extension, it sets aside its current work and 
processes the extension in its entirety. When the compiler 
resumes its work, the compiled extension is available for 
use throughout the rest of the compilation. In Figure 3, 
Module C can make use of extensions defined in Extension 
B. This process can be used repeatedly; i.e., the extended 
compiler can be further extended, without bound. 
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Figure 3:  SLX Compiler Architecture 
 

2.2  SLX�s Statement Definition Facility 
 

One of the most commonly used forms of SLX compiler 
extensions is the SLX statement definition facility. This 
facility allows the introduction of new statements into the 
SLX language. Such statements are similar to macros in 
traditional programming languages, except that they 
operate at the statement level, rather than at the expression 
level, as is commonly the case. 

There are four major components of a statement 
definition: 
 

A. a prototype which specifies the syntax of the 
statement (informally, �how it looks�); 

B. optional logic and looping within the definition, 
responding to the presence, absence, and other 
characteristics of statement components; and 

C. one or more expand statements which inject 
�generated� text into the source stream seen by 
the SLX compiler. 

D. optional diagnose statements which issue mean-
ingful messages when errors in statement usage 
are made. 

 
SLX statement prototypes are described using a meta-

language which permits specification of the following 
kinds of statement components: 

 
A. User-supplied expressions 
B. User-defined keywords 
C. Optional components 
D. Repeated components; e.g., lists of items 
E. Punctuation characters 

 
Perhaps the most striking feature of all of SLX is the 

vehicle by which the logic, looping, expansion, and issuance 
of diagnostics are expressed. Most languages which have 
macros employ special sublanguages for defining macros. 
Typically such sublanguages are radically different from, 
and weaker in expressive power than, their host languages. 
For example, #if, #else, and #endif in the C language offer 
very weak capabilities for conditional expansion of macros, 
and their syntax differs from that of C itself. In SLX, there is 
no separate sublanguage used for statement definitions; 
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rather, the SLX language itself is used. The only limitation is 
that simulation constructs such as time delays, fork, and wait 
until, which have no meaningful interpretation during 
program compilation, cannot be used. 

The ability to use (almost) all of the SLX language in 
statement definitions permits tremendous flexibility and 
complexity in statement definitions. For example, a 
statement definition can read information from a file and 
store the information in user-defined, compile-time data 
structures which are interrogated and manipulated by other 
statement definitions. 

In addition to statement definitions, SLX supports 
more traditional macros and precursor modules. Precursor 
modules are �large� SLX compiler extensions. They are 
not limited to just macros and statement definitions; rather, 
they can contain a host of functions and data which are to 
be made available at compile-time, run-time, or both. 
Finally, note that all three forms of SLX compiler 
extensions (statement definitions, macros, and precursor 
modules) are compiled into executable machine 
instructions by SLX. Thus, SLX fulfills the promise of 
unbounded, executable user extension of SLX itself. 

 
3  SLX KERNEL FEATURES 
 
The number of primitives required to support simulation is 
surprisingly small. Implementing some of these primitives in 
a general form, however, can be very difficult. Features such 
as SLX�s generalized wait until are extremely difficult to 
implement. Not surprisingly, this feature has rarely appeared 
in other simulation software. Paradoxically, some of the 
features which are the most difficult to implement are the 
most easily understood. In the remainder of this section, we 
will present some representative features, to illustrate the 
functionality, ease-of-of-use, and ease-of-learning of SLX.  
 
3.1  Objects and Pointers to Objects 
 
In SLX, two kinds of objects are used to represent 
components of systems being modeled. Passive objects are 
used for modeling entities which have no �executable� 
behavior. In a model of a factory, widgets being produced 
would be modeled as passive objects, since they have no 
self-determined, executable behavior. Their behavior 
results from being acted upon by other objects. (For those 
readers familiar with C, passive objects are very much like 
C structs.)  Active objects have executable, at least partially 
self-determined behavior patterns. In a model of a factory, 
a foreman would be modeled as an active object. 

Some entities can be modeled either as active objects 
or passive objects. For example, a simple server with a 
FIFO queue can be modeled as a passive object. Its 
behavior depends solely on the requests made for it by 
active objects. (This is the way Facilities work in GPSS/H.) 
For more complicated servers, an active object may be 
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more appropriate. Consider a butcher in a model of a 
supermarket. In a simple queueing model, the butcher can 
be represented as a passive object, responding to requests 
for service one customer at a time. In a more realistic 
model, a butcher would have a more complex behavior 
pattern, cycling through activities of cutting meat, arrang-
ing products in refrigerators, interacting with the deli 
department, taking breaks, etc. Such behavior would re-
quire modeling the butcher as an active object. 

Objects are created by using the new operator, which 
returns a pointer to the newly created object. When an 
activate operator is applied to a pointer to an object, a puck 
(defined in Section 3.2) is created for the object and placed 
on the Current Events Chain; i.e., the puck is placed in a 
ready-to-execute state. The new and activate operators are 
almost always used in a single statement: 

 
activate new butcher; 
 

The manipulation of pucks is the basic mechanism by 
which a collection of objects experiences events over time. 
By rapidly switching from puck to puck, the SLX simula-
tor creates the illusion of parallelism among the activities 
of the objects to which the pucks are attached. Scheduled 
time delays, e.g., service times, and state-based delays, 
e.g., waiting for a server to become available, are opera-
tions performed on pucks.  

 
3.2  What�s a Puck? 
 
The original version of GPSS introduced the transaction-
flow modeling world-view in 1962. In the transaction-flow 
world view, attention is focused on units of traffic, called 
transactions, which flow through the block diagram repre-
sentation of a system, competing for system resources. In 
the 36-year period since GPSS was introduced, a large 
number of other languages have implemented variations of 
the transaction-flow world view. Implementation of this 
world view, and the terminology used to describe it vary 
widely (Schriber and Brunner 1997). 

In traditional transaction-flow languages, a transaction 
contains two types of data, user-defined data particular to the 
unit of traffic, and �scheduling� data, needed to keep track of 
the state and location (current block in the block diagram) of 
the unit of traffic in a model. Figure 4 illustrates this 
architecture. In a GPSS model of a supermarket, a transac-
tion representing a shopper would have attributes such as 
probabilities of visiting various departments, e.g., the deli, 
expected number of items to be purchased in each depart-
ment, etc. Scheduling data would include priority, next 
scheduled event time, next model statement to be executed, 
etc. Scheduling data includes values which can be modified 
by a program, e.g., transaction priority, and other values 
which are �internal� values maintained by run-time support 
routines for the simulation language. All user-defined 
transaction data can be both read and written by user code. 
18
In SLX the functionality of a transaction is broken 
down into independent lower-level components, and there 
are no transactions, per se. The role of a transaction�s user-
defined data is played by an instance of an SLX user-
defined object class. The role of a transaction�s scheduling 
data is played by an SLX puck. Each SLX object created is 
an instance of its object class and has its own copy of the 
object class�s data. The statements which are executed by 
the object are contained in the actions property of the 
object�s class and any lower-level procedures invoked by 
the actions property. In SLX, it is possible to have more 
than one puck for a given object. An object instance for 
which there are two pucks is shown in Figure 5. 

 
3.3  Inter-Object and Intra-Object Parallelism 
 
In SLX, parallelism can be modeled in two ways: as inter-
actions among objects (inter-object parallelism) and as 
multiple actions performed on behalf of the same object 
(intra-object parallelism.) Inter-object parallelism, in which 
there is a 1:1 relationship between objects and pucks, is 
functionally equivalent to transaction flow. Intra-object 
parallelism is achieved by creating more than one puck for 
an active object. This is accomplished by means of a fork 
statement. Suppose that in developing a model of a factory, 
we need to model a complicated machine which is capable 
of performing three operations simultaneously. Some com-
ponents of the machine are common to all three operations. 
The data describing such components must be easily 
accessible within the portions of the model for each of the 
three operations. Figure 6 shows how an active object can 
be used to model such a machine, using fork statements. 

Each fork statement creates a new puck for the 
machine object. The offspring puck is placed on the Cur-
rent Events Chain, poised to execute the actions within the 
braces (�{�}�) following the fork statement. The parent 
puck continues its execution with the next statement. After 
the second fork is executed, the machine object has three 
pucks, each of which has direct access to data common to 
the entire machine, and each of which is independently 
scheduled. Thus our active machine can do three things at 
once. 

Most transaction-flow simulation languages offer only 
inter-object parallelism. Most also offer some form of 
�cloning� operation which is superficially similar to SLX�s 
fork statement. When such an operation is performed, a 
new transaction is created. The new transaction, by 
definition, has its own scheduling data, and usually the 
user-defined attributes of the parent transaction are copied 
into the offspring (clone). A new transaction is another 
complete instance of Figure 4. SLX�s fork statement 
creates a new puck (scheduling data only) which shares the 
user-defined attributes with other pucks, as shown in 
Figure 5. 
 

6



riksen 
 

Hen

Scheduling 
Data 

User-Defined 
Attribute Data 

 
 
 
                                    Block 
 
         Current Block 
                                    Block 
 
 
                                    Block 
 
 

Figure 4:  Traditional Transaction Architecture 
 

 
       Puck 1                     Object Instance Data  
 
 
      class x 
         { 
       Puck 2       actions 
            { 
            statement 
            statement 
            statement 
            } 
         }; 

 

Figure 5: An Active Object with Two Pucks 
 

class machine 
 { 
 �Declarations for variables local to the machine� 
 
 actions 
  { 
  fork 
   { 
   �actions for operation 1� 
   } 
 
  fork 
   { 
   �actions for operation 2� 
   } 
 
  �actions for operation 3� 
  } 
 }; 
 

Figure 6:  Intra-Object Parallelism Using Forks 
 
If a language has only a transaction-cloning verb and no 

fork verb, modeling system components such as the com-
plicated machine discussed above is much more difficult, 
although certainly not impossible. Consider, for example, 
18
GPSS/H�s SPLIT block, which creates a clone of an entire 
transaction. We could use SPLIT blocks to model our 
machine. The difficulty arises in choosing where to store the 
data that must be shared by all three transactions. If multiple 
GPSS/H transactions need to share a single copy of data 
describing a component of a system, the data must be stored 
in global variables. (In GPSS/H, transactions can easily 
change their own attributes, but changing the attributes of 
other transactions is difficult. Thus, storing the shared data 
in any given transaction is impractical.) If only one such 
machine exists, storing the shared data in global variables is 
easy. If there is more than one such machine, separate 
collections of shared global variables must be used, one 
collection for each such machine. If the collection of 
machines does not change during model execution, the 
shared data can be statically allocated. However, if the 
collection of machines changes during model execution, 
some form of dynamic data management must be implemen-
ted by the modeler, since GPSS/H global variables are 
statically allocated at the start of model execution; i.e., they 
cannot be created and destroyed during model execution. 

The fork statement is an extremely handy modeling 
tool. In complex modeling situations, intra-object parallel-
ism can be indispensable. The use of multiple pucks offers 
easy shared access to object attributes among all the pucks 
which belong to any given instance of the object, while 
preventing access by pucks which belong to a different 
instance. 

 
3.4  SLX�s Generalized Wait Until 
 
As units of traffic flow through a model, they are subject to 
two forms of delay, scheduled delays, and state-based 
delays. In SLX, state-based delays are modeled using 
control variables and the wait until statement. The keyword 
�control� is used as a prefix on SLX variable declarations: 

 
control integer count; 
control boolean repair_completed; 
 
The �control� keyword tells the SLX compiler that at 

each point at which the value of the control variable is 
changed, a check must be made to see whether any pucks 
in the model are currently waiting for the variable to attain 
a particular value or range of values. Such waits are 
described using the wait until statement: 

 
wait until (count > 10); 
wait until (repair_completed); 
 

Compound conditions are allowed as well: 
 
wait until (count >= 10  

or repair_completed 
and not repairman_busy); 
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SLX also supports indefinite (user-managed) waits. Three 
steps are required to implement an indefinite wait. First, 
the puck which is going to wait must be made accessible to 
other pucks. This is usually done by placing the puck into a 
set. Second, the puck executes a wait statement with no 
�until� clause. Finally, at a subsequent point in simulated 
time, another puck executes a reactivate statement to 
reactivate the waiting puck. 

Wait until expressions can include a time-based 
condition.  

 
optimistic_event_time = �some expression� 
 
wait until  (time == optimistic_event_time 
   or �some other condtion�); 
 

4  SLX AS A COMPONENT OF YOUR WORLD 
 
Although SLX is extremely powerful and flexible, there 
are situations in which it is convenient to use other 
software tools in conjunction with SLX. For example, if 
you have a pre-existing collection of C functions, it may be 
very handy to be able to call them from SLX. The 
remainder of this section provides examples of how SLX 
can be integrated with the other tools in your world. 
 
4.1  SLX�s DLL Interface 
 
SLX has very powerful facilities for calling C/C++ 
functions which are contained in a DLL (dynamic link 
library). To call functions in a DLL, you must supply to 
SLX a function prototype which defines the arguments (if 
any) of each function, the values returned (if any), and the 
name of the DLL file. The SLX development environment 
has a menu item which can be clicked to generate a 
C/C++-compatible .h file which maps all SLX data passed 
to and from DLL functions into C syntax. SLX objects 
contain hidden elements which are used for error detection, 
debugging and other internal bookkeeping functions. If an 
SLX object is to be manipulated by a C function, the 
hidden information must be taken into account when 
constructing an analagous C/C++ struct definition. 
Accordingly, object elements for which there is a direct 
counterpart in C/C++ are described using straightforward 
declarations in a generated .h file, and hidden elements are 
declared as arrays of bytes with the dimension chosen to 
�pad� the C/C++ struct to achieve agreement with SLX. 

When SLX detects the first call of any function in a 
given DLL, it checks to see if the DLL has a function 
named �connect.� If so, this function is called first, and 
SLX passes it a pointer to a vector of pointers to callback 
functions inside SLX. These functions can be used to 
perform functions that are risky or impossible to perform 
from C/C++ subsequently called DLL functions. At the 
completion of execution, each DLL used is interrogated for 
the existence of a �disconnect� function. Any such 
18
functions found are called by SLX prior to SLX program 
termination. This allows DLLs to perform any final 
�cleanup� operations, e.g., closing open files. 

 
4.2  SLX-Proof Interface 
 
Wolverine Software has developed an interface between 
SLX and Proof Animation (Henriksen 1998) using SLX�s 
statement definition facility. Proof requires an input stream 
of ASCII commands that create and destroy objects on the 
screen, move them, change their colors, etc. A small, but 
powerful collection of commands is used for this purpose. 
SLX statements have been defined for generating the com-
monly used Proof commands and command options. The 
syntax of the SLX statements matches that of the corre-
sponding Proof commands. For example, to generate a 
 
 place 27 on loop 
 
Proof command, one might write 
 
 PA_place objectID on �loop�; 
 
In the example shown above, �27� and �loop� are variable 
components of the Proof place on command. The SLX 
code supplies �27� as the value of a variable named 
objectID and supplies �loop� as a string constant. 

The current version of the SLX-Proof interface writes 
Proof command streams to files. A DLL version of Proof is 
under development. When this version is completed, the 
statement definitions in the SLX-Proof interface will be 
augmented to allow the transmission of commands directly 
to Proof.dll without using files. This will make it possible 
to run a simulation and animation concurrently. 

A third party has developed an SLX package that is 
capable of reading entire Proof layout files, storing them in 
SLX data structures, and rewriting the layout files. Thus 
geometric characteristics of layouts drawn or modified 
using Proof are accessible to SLX programs. In addition, 
Proof layout files can be modified by an SLX program. 

 
4.3  SLX-Prime Interface 
 
Prime (Wagner and Wilson 1997) is a software package for 
fitting Bézier-curve-based probability distributions to data 
observations. Bézier curves can be fitted to data using a 
variety of automated algorithms and by visual 
manipulation of the control points which define the Bézier 
curve. Thus it is possible to take a fitted curve and move 
the mass of the probability distribution around. For 
example, one might feel that in a real system, data might be 
a little more skewed to the right than collected experimen-
tal data would suggest. Visual manipulation of the distribu-
tion makes this easy to do, provided that the resultant curve 
can be easily incorporated into a random variate generator 
in a simulation package. 
8
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The output of Prime is a collection of Bézier control 
points stored in a file in a straightforward ASCII format. In 
cooperation with the author of Prime, Wolverine Software 
developed several statement definitions which allow direct 
incorporation of Prime-generated curves into SLX models. 
The �Bézier_data� statement reads a Prime-generated file 
(at compile time!) and deposits the defined control points 
into an SLX object. This object can be subsequently used 
for generating random variates from the fitted distribution. 

SLX and Prime work very well together, The initial 
integration of the two packages was accomplished in under 
24 hours. After the initial integration, a highly tuned 
variate generator was written in assembly language, to 
achieve maximum efficiency in variate generation. This 
required another day�s work. 

 
4.4  SLX-HLA Interface 
 
SLX�s DLL interface has been used to connect SLX 
models with the run-time infrastructure (RTI) of HLA 
(DoD 1997), DoD�s High Level Architecture for distrib-
uted simulations (Strassburger, Schulze, Klein, and 
Henriksen 1998). Integration was accomplished by 
building C++ wrapper functions which sit between SLX 
and the RTI. The integration of SLX and HLA is highly 
synergistic. It brings to SLX an architecture which prom-
ises to achieve widespread adoption for distributed, inter-
operable simulations. For people who know HLA and want 
to develop such simulations, SLX provides a powerful 
alternative to developing simulations from the ground up in 
a high-level language such as C++ or ADA. 
 
5  TEACHING SLX 
 
The architecture of SLX has potentially profound 
implications for teaching simulation. The usual approach to 
teaching simulation is to �dive in� at an intermediate level 
by providing an easily understood collection of building 
blocks and exploring some well-motivated examples. 
Students of simulation who tackle real-world applications 
sooner or later reach a point at which they have to go back 
and build a foundation under their knowledge; i.e., they 
have to learn how things really work (Schriber and Brunner 
1997). Depending on exactly when the foundation-building 
process takes place, students may have already developed 
usage patterns which ignore some of a language�s capabili-
ties and misuse others. For example, self-taught users of 
GPSS/H will almost always favor an �active-object, 
passive-server� world-view, even though the language is 
quite capable of expressing an �active-server, passive 
object� world-view. For users of very high-level simulation 
packages, especially graphically based model-builders, the 
foundation-building may never take place. Whether this is 
good or bad is a matter of religion. Advocates of the very 
high-level approach think this is good, while their more 
18
conservative counterparts are appalled by the danger of 
doing too much with too little knowledge. 

In SLX, the number of kernel constructs which direct-
ly support simulation is very small. Depending on what 
one counts as a simulation feature, the number ranges from 
roughly 8 to 12. Our experience with GPSS/H has proven 
that this is a small enough number of building blocks for 
beginners to readily absorb. For example, we have seen 
many times that so-called �9-block GPSS/H� is easily mas-
tered and quite powerful. 

However, even with 9-block GPSS/H, students quickly 
reach a point at which foundation-building is necessary. 
With SLX, a bottom-up approach is feasible. For example, 
consider modeling a barbershop, a traditional introductory 
one-line, single-server queuing model. In a beginner�s 
model, the barbershop runs from 9:00-5:00, at which time it 
summarily shuts down, ignoring the customer (if any) who is 
in the barber chair at that time and ignoring customers (if 
any) in the queue. In a second model, more realistic shut-
down conditions can be implemented. At 5:00 the door to 
the shop is closed, and the barber does not leave until the 
current customer and all customers in the queue at 5:00 have 
been served. In SLX, this condition is easily expressed as a 
compound �wait until� condition, e.g., �wait until (time >= 
5:00 and queue empty and server idle).�  Thus, SLX�s wait 
until feature is well-motivated and easily understood at a 
very early stage of model building. In SLX, wait until is the 
foundation of all forms of state-based events. Thus mastery 
of wait until yields enormous benefits. 

SLX kernel-level simulation primitives are exposed, 
i.e., they can be used directly. In most simulation software, 
primitives are bound into impenetrable higher-level 
features. For example, in GPSS/H there are at least five 
building blocks which internally utilize the equivalent of 
wait until. Some of these blocks have many external 
variations. Thus, students of GPSS/H must master the 
external variations and learn how the underlying wait until 
mechanism works. In SLX, it�s easier to learn the general 
mechanism first. Wait until is both an SLX primitive and a 
fundamental modeling concept. Thus, by teaching/learning 
wait until, we can kill two birds with one stone. 

The hierarchical architecture of SLX is mirrored by 
Windows-based tools in the SLX model development / 
debugging environment. Windows can be opened to 
explore every aspect of puck management. Students of 
SLX have the ability to see how SLX works. 

 
5  CONCLUSIONS 
 
SLX is a well-conceived, layered simulation system. Users 
of the upper layers can ignore lower layers. However, if 
their requirements are not met at a given level, they can 
move down one or more levels, without exerting 
extraordinary effort and without losing protection against  
potentially disastrous errors. Developers, who are used to 
9
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working down among the lower layers, have at their 
disposal powerful extensibility mechanisms for building 
higher layers for use by themselves or others. SLX has 
been used in a variety of very large, complex applications. 
Its extensibility mechanisms have been heavily exploited. 
SLX is easily integrated with other simulation tools, 
including HLA. If you�re teaching or learning simulation, 
or developing simulations, SLX can be an invaluable 
component of your world. SLX stretches the boundaries of 
simulation software. 
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