
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

RANKING AND SELECTION FOR STEADY-STATE SIMULATION

David Goldsman

School of Industrial & Systems Engineering
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.

William S. Marshall

Georgia Tech Research Institute
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.

Seong-Hee Kim
Barry L. Nelson

Department of Industrial Engineering
and Management Sciences
Northwestern University

Evanston, IL 60208-3119, U.S.A.

c
e

r-
a
d
r
o

ra
ti

e

e
it
it
it
s

g

O

e
l

li
le

e.
3

tes

d

e
he
e
or

ce

ue

are
to
y.

ce
to

s

an
nd
ABSTRACT

We present and evaluate two ranking-and-selection pro
dures for use in steady-state simulation experiments wh
the goal is to find which among a finite number of alte
native systems has the largest or smallest long-run aver
performance. Both procedures extend existing metho
for independent and identically normally distributed obse
vations to general stationary output processes, and b
procedures are sequential.

1 INTRODUCTION

The “steady-state simulation problem” is one of the cent
challenges in the design and analysis of stochastic simula
experiments, and it distinguishes simulation experimen
from classical statistical experiments. At a high level, th
steady-state simulation problem is to estimate some prope
of a (perhaps vector-valued) random variable that is defin
by the limiting distribution of a stochastic process, the lim
being taken as the time index of the process goes to infin
Since the random variable is defined in terms of a lim
realizations of it cannot be obtained (except in special ca
that are rarely of practical interest).

In this paper we consider the problem of determinin
which of a finite number of simulated systems has th
largest (or smallest) steady-state mean performance.
solutions are extensions of existing procedures that ha
proven performance for the special case of independ
and identically distributed (i.i.d.) data >from the norma
distribution. As we point out in Section 2, few of the
assumptions underlying the existing procedures will be va
in steady-state simulation, particularly when only a sing
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replication is obtained from each system, as we assum
Section 2 also reviews the relevant literature. In Section
we describe the new procedures, while Section 4 evalua
them empirically. We conclude by offering our opinions
about the key open research questions in Section 5.

2 BACKGROUND

In this section we review the two procedures, designe
originally for i.i.d. normal data, that we will extend and
enhance for use in steady-state simulation problems. W
also more precisely characterize what we mean by t
“steady-state simulation problem,” and review the literatur
on ranking and selection (R&S) procedures designed f
this case.

2.1 Two Procedures for i.i.d. Normal Data

We describe two procedures that guarantee, with confiden
level at least 1−α, that under certain conditions the system
ultimately selected has the largest true mean when the tr
mean of the best system is at leastδ better than the second
best. When there are inferior systems whose means
within δ of the true best, then the procedures guarantee
find one of these “good” systems with the same probabilit
The parameterδ, which defines theindifference zone, is
set by the experimenter to the smallest absolute differen
in expected performance that is considered important
detect. Differences of less thanδ are considered practi-
cally insignificant. Procedures of this type are known a
indifference-zone ranking and selection procedures. Com-
prehensive reviews of ranking and selection procedures c
be found in Bechhofer, Santner and Goldsman (1995) a
4
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Goldsman and Nelson (1998). Both procedures studie
here—one from Rinott (1978) and the other from Kim and
Nelson (2000)—are sequential, by which we mean the
typically require two or more stages of simulation.

Suppose that there arek ≥ 2 systems, and letXij
denote thej th independent observation from systemi. Both
procedures assume that theXij ∼ N(µi, σ 2

i ), withµi andσ 2
i

unknown, and that the data across systems are independe
Also let X̄i(r) = r−1∑r

j=1Xij denote the sample mean of
the first r observations from systemi.

Rinott’s (1978) procedure (RP) requires at most two
stages of simulation; it is one of the simplest and mos
well-known R&S procedures.

The fully sequential procedure (FSP), due to Kim and
Nelson (2000), also allows elimination. This procedure take
only a single observation from each alternative system sti
in play at each stage of simulation, and may choose t
cease sampling from systems that no longer appear to
competitive.

Both RP and FSP terminate with a single system tha
is reported as the best. They could be applied “as is” t
steady-state simulation experiments provided we are willin
to make multiple replications of each alternative and us
the within-replication averages as the basic observation
In the following section we discuss reasons why such a
experiment design may not be desirable.

2.2 Steady-State Simulation

Here we define what we mean by “steady-state simulation
and set up the key assumptions.

Now letXi1, Xi2, . . . denote the simulation output pro-
cess >from theith alternative system. For example,Xij
could be thej th individual waiting time in theith queueing
system under consideration. These observations are typ
cally neither independent—due to the natural dependence
the process—nor identically distributed—due to initializing
the process in other than long-run conditions. They are als
likely to be non-normal. However, for many processes
appropriate initialization (selection of initial conditions and
truncation of some initial data) will yield an output pro-
cess that approximately satisfies the following collection o
assumptions:

Stationarity: Xi1, Xi2, . . . forms a stationary stochas-
tic process.

Consistency: X̄i(r) −→ µi a.s. asr →∞.
Functional Central Limit Theorem (FCLT): There

exist constantsµi andv2
i > 0 such that

∑brtc
j=1(Xij − µi)√

r
=⇒ viW(t)

for 0 ≤ t ≤ 1, whereW(t) is a standard Brownian motion
(Weiner) process and=⇒ denotes convergence in distribu-
tion asr →∞.
545
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We will base comparisons on the steady-state mean
µ1, µ2, . . . , µk. Our consistency assumption implies that i
is reasonable to estimateµi by X̄i(r) for some suitably large
r. What we need to make statistically valid selections i
the steady-state simulation environment is a good estimat
for the sample mean’s variance. This is relatively easy
we make replications, rather than a single long run, bu
then we have to solve the initialization problem on eac
replication. This can be very inefficient if large chunks o
data need to be deleted from each replication. But worse,
we do a poor job of initializing then we can allow substantia
bias to creep into our estimator. By making a single lon
replication, we minimize the bias.

Rather than directly trying to estimate the Var[X̄i(r)],
we can instead seek a good estimator of thevari-
ance parameter(or asymptotic variance constant), v2

i ≡
limr→∞ rVar[X̄i(r)]. A number of relevant variance es-
timation techniques will be discussed in Section 2.3. W
incorporate these estimators into extended versions of R
and FSP in Section 3.

2.3 Variance Estimators

In this subsection we will review a few of the popular
estimators for the variance parameterv2

i . These include
batch means, overlapping batch means, and various sta
dardized time series estimators. All of the methods rel
on the FCLT assumption (and other moment conditions) t
produce asymptotically consistent estimates of the varian
parameter. All are intuitive: The batch means method us
the sample variance of approximately i.i.d. sample mean
from contiguous batches of observations. The overlappin
batch means technique, as its name suggests, uses a varia
estimate based on a weighted sample variance of overlapp
batch means — with full knowledge that these means a
highly correlated. Standardized time series estimators re
on the fact that properly standardized stationary process
can be readily approximated as Brownian motion.

In all cases, we will work with batches of observations
What will differ among the variance estimators is how the
estimation techniques process the batched data.

2.3.1 Batch Means

We can divide n observations,Xi1, Xi2, . . . , Xin, into
b contiguous batches, each of lengthm (where we
assume for convenience thatn = bm); the observa-
tionsXi,(j−1)m+1, Xi,(j−1)m+2, . . . , Xi,jm comprise thej th
batch,j = 1,2, . . . , b. The quantity

X̄i,j,m ≡ 1

m

m∑
p=1

Xi,(j−1)m+p
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is called thej th batch meanfrom systemi. Under mild
conditions, it is known that withb > 1 fixed,

mV 2
B ≡ m

b − 1

b∑
j=1

(
X̄i,j,m − X̄i(n)

)2
=⇒ v2

i χ
2(b − 1)

b − 1
,

as n → ∞ (implying thatm → ∞). The symbolχ2(d)

denotes a chi-squared random variable withd degrees of
freedom. It can be shown that if the batch sizem and
the number of batchesb become large in a certain way
(Damerdji 1994), thenmV 2

B → v2
i almost surely (that is,

mV 2
B is consistent forv2

i ).

2.3.2 Overlapping Batch Means

Instead of working with asymptotically independent batch
means as we did above, we now considerall batch means
of the form

X̄i(j,m) ≡ 1

m

m−1∑
p=0

Xi,j+p,

for j = 1,2, . . . , n − m + 1. The observations
Xi,j , Xi,j+1, . . . , Xi,j+m−1 comprise thej th (overlapping)
batch from alternativei.

The overlapping batch means (OBM) estimator for the
variance parameterv2

i is simply

mV 2
O ≡

nm

(n−m+ 1)(n−m)
n−m+1∑
j=1

(
X̄i(j,m)− X̄i(n)

)2
.

It can be shown that as the batch sizem and the ratiob ≡
n/m become large, the OBM estimator is consistent forv2

i

(Damerdji 1994). Further, Meketon and Schmeiser (1984
find that the distribution of this estimator is approximated
by

mV 2
O ≈ v2

i χ
2(d)

d
,

whered = b3(b− 1)/2c.

2.3.3 Standardized Time Series

We now look at a completely different methodology for
estimatingv2

i known as standardized time series.
54
)

For i = 1,2, . . . , k, j = 1,2, . . . , b, and h =
1,2, . . . , m, thehthcumulative meanfrom batchj of system
i is

X̄i,j,h ≡ 1

h

h∑
p=1

Xi,(j−1)m+p.

For i = 1,2, . . . , k, j = 1,2, . . . , b, and 0≤ t ≤ 1, the
standardized time seriesfrom batchj of systemi is given
by

Ti,j,m(t) ≡ bmtc(X̄i,j,m − X̄i,j,bmtc)
vi
√
m

.

Schruben (1983) showed that ifXi1, Xi2, . . . , Xin is a sta-
tionary sequence satisfying certain mild moment and mix
ing conditions, then asm→∞ we haveTi,j,m(t)⇒ B(t),
0 ≤ t ≤ 1, a standard Brownian bridge process.

We denote the weighted area under the standardiz
time series formed by thej th batch of observations >from
systemi by

Ai,j ≡ vi

m

m∑
`=1

w(`/m)Ti,j,m(`/m),

wherew(·) is a pre-specified weighting function that is
continuous on [0,1], not dependent onm, and normalized
so that

Var

(∫ 1

0
w(t)B(t) dt

)
= 2

∫ 1

0

∫ u

0
w(u)w(t)t (1− u) dt du = 1.

This expression can be simplified considerably; see Gold
man, Meketon, and Schruben (1990) for details.

The (weighted) area (A) estimator forv2
i is

mV 2
A ≡ 1

b

b∑
j=1

A2
i,j

=⇒ v2
i χ

2(b)

b
, b ≥ 1.

One may ask: Why bother with the complication o
a weighting function? The answer stems from a clos
analysis of the small-sample bias of the variance estimato
for different choices of the weights. A judicious choice o
w(t) can result in the disappearance of the area estimato
first-order bias term, e.g.,w(t) ≡ √840(3t2 − 3t + 1/2),
which we use.
6
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2.4 R&S for Steady-State Simulation

The question at hand is how to adapt R&S procedur
to steady-state simulation problems. There have been
number of attempts to do so, primarily extending two-stag
procedures such as RP. Key to any such extension is a w
to characterize the underlying variability of the stochast
output process from each system, typically via an estimat
of the asymptotic variance constantv2

i . Goldsman (1983)
and Nakayama (1995) suggest estimatingv2

i using the batch
means method, while Goldsman (1985) proposes metho
based on standardized time series. These papers are clo
in spirit to our extension of RP.

Iglehart (1977) estimatedv2
i using the regenerative

method, a method that is less generally applicable than t
ones we employ. Dudewicz and Zaino (1977) based the
estimator ofv2

i on the assumption that the simulation out
put process is well represented by an autoregressive orde
(AR(1)) process, which is clearly not true in general. Sulli
van and Wilson (1989) used an estimator of the simulatio
output spectrum at frequency 0.

Some of these procedures are heuristics, but others h
provable asymptotic validity asδ→ 0, which is a strategy
that we also employ. Of course, in a real problemδ is a fixed
quantity. However, establishing that a procedure is val
in this limiting sense shows that, as we become more a
more demanding of the procedure in terms of its ability t
distinguish small differences, then we can be more and mo
confident that the procedure works. This seems like a use
assurance, since selecting the best is most difficult wh
even tiny differences matter. See also Nakayama (1997) a
Damerdji and Nakayama (1996, 1999) for related asympto
analysis of multiple comparison procedures.

3 NEW PROCEDURES

We now assume that the output from each system,Xij , i =
1,2, . . . , k, j = 1,2, . . ., is a stationary stochastic process
satisfying the assumptions of Section 2.2, and further th
the systems are simulated independently. Implicit in the
assumptions are effectively solving any initialization-bia
problem, and not using common random numbers to indu
dependence across alternatives.

We extend RP and FSP to steady-state simulation
replacing the first-stage variance estimator FSP) with a
estimator of the appropriate asymptotic variance consta
from Section 2.3. For RP we need an estimator of th
marginal asymptotic variance, while for FSP we requir
an estimator of the asymptotic variance of the differenc
between pairs of systems.

To be specific, letXi1, Xi2, . . . , Xin0 be the first-stage
sample from systemi. From this sample we form batches of
sizem and apply a variance estimatorV 2 from Section 2.3.
In the case of the BM and A estimators we formb = bn0/mc
5
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batches of sizem; for the OBM estimator we formn0−m+1
batches of sizem. The degrees of freedom associated with
each estimator ared = b − 1 for BM, d = b for A, and
d = b3(b− 1)/2c for OBM.

Our extension of Rinott’s procedure is as follows:

Extended-Rinott’s Procedure (ERP)
Setup: Select confidence level 1−α, indifference-zone

parameterδ > 0, first-stage sample sizen0 ≥ 2 and batch
sizem < n0.

Initialization: Obtain Rinott’s constanth = h(d, k,1−
α) (Bechhofer, Santner, and Goldsman 1995).

Obtain n0 observationsXij , j = 1,2, . . . , n0, from
each systemi = 1,2, . . . , k.

For i = 1,2, . . . , k, computemV 2
i , the sample asymp-

totic variance of the data from systemi. Let

Ni = max

{
n0,

⌈
h2mV 2

i

δ2

⌉}
.

Stopping Rule: If n0 ≥ maxi Ni then stop and select
the system with the largest̄Xi(n0) as the best.

Otherwise, takeNi − n0 additional observations
Xi,n0+1, Xi,n0+2, . . . , Xi,Ni from each systemi for which
Ni > n0.

Select the system with the largestX̄i(Ni) as the best.

The FSP is modified similarly, as shown below. In
the procedure, we estimate the asymptotic variance of t
difference,v2

i + v2
` , by first forming the differenced series

Di j̀ = Xij − X j̀ , j = 1,2, . . ., then applying one of the
variance estimators from Section 2.3 to the seriesDi j̀ .

Extended-Fully Sequential Procedure (EFSP)
Setup: Select confidence level 1−α, indifference-zone

parameterδ > 0, first-stage sample sizen0 ≥ 2 and batch
sizem < n0. Calculate

η = 1

2

{[
2
(
1− (1− α)1/(k−1)

)]−2/d− 1

}
. (1)

Initialization: Let I = {1,2, . . . , k} be the set of
systems still in contention, and leth2 = 2ηd.

Obtain n0 observationsXij , j = 1,2, . . . , n0, from
each systemi = 1,2, . . . , k.

For all i 6= ` computemV 2
i`, the sample asymptotic

variance of the difference between systemsi and`. Let

Ni` =
⌊
h2mV 2

i`

δ2

⌋

and let

Ni = max
`6=i Ni`.
47
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HereNi + 1 is the maximum number of observations tha
can be taken from systemi.

If n0 ≥ maxi Ni + 1 then stop and select the system
with the largestX̄i(n0) as the best.

Otherwise set the observation counterr = n0 and go
to Screening.

Screening: Set Iold = I . Let

I =
{
i : i ∈ Iold and

X̄i(r) ≥ X̄`(r)−Wi`(r),∀` ∈ Iold, ` 6= i
}

where

Wi`(r) = max

{
0,

δ

2cr

(
h2mV 2

i`

δ2 − r
)}

.

Stopping Rule: If |I | = 1, then stop and select the
system whose index is inI as the best.

Otherwise, take one additional observationXi,r+1 from
each systemi ∈ I and setr = r + 1.

If r = maxi Ni + 1, then stop and select the system
whose index is inI and has the largest̄Xi(r) as the best.
Otherwise go toScreening.

Notice that in EFSP, as in ERP, the variance estimato
depend only on the first-stage data. We can show that
mV 2 ∼ v2χ2(d)/d, then the EFSP achieves the desire
probability of correct selection asδ→ 0. However, at best
this assumption will be approximately true. Therefore, w
also consider a further refinement of the EFSP in which w
update the variance estimators as more data are obtain
In order to define the EFSP with updates, we need th
concept of a batching sequencemr : A batching sequence
mr is an integer-valued, nondecreasing function ofr with
the property thatmr −→∞ as r −→∞.

Extended-Fully Sequential Procedure with Updates (EF-
SPU)

Setup: Select confidence level 1−α, indifference-zone
parameterδ > 0, first-stage sample sizen0 ≥ 2 and initial
batch sizemn0 < n0. Setr = n0. Calculate

η = − log
[
2
(
1− (1− α)1/(k−1)

)]
.

Initialization: Let I = {1,2, . . . , k} be the set of
systems still in contention, and leth2 = 2η.

Obtain n0 observationsXij , j = 1,2, . . . , n0, from
each systemi = 1,2, . . . , k.
e

54
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Update: If mr has changed since the last update, the
for all i 6= `, computemrV 2

i`(r), the sample asymptotic
variance of the difference between systemsi and ` based
on br batches of sizemr . Let

Ni`(r) =
⌊
h2mrV

2
i`(r)

δ2

⌋

and let

Ni(r) = max
`6=i Ni`(r).

If r ≥ maxi Ni(r)+ 1 then stop and select the system
with the largestX̄i(r) as the best.

Otherwise go toScreening.
Screening: Set Iold = I . Let

I =
{
i : i ∈ Iold and

X̄i(r) ≥ X̄`(r)−Wi`(r),∀` ∈ Iold, ` 6= i
}

where

Wi`(r) = max

{
0,

δ

2cr

(
h2mrV

2
i`(r)

δ2 − r
)}

.

Stopping Rule: If |I | = 1, then stop and select the
system whose index is inI as the best.

Otherwise, take one additional observationXi,r+1 from
each systemi ∈ I and setr = r + 1.

If r = maxi Ni + 1, then stop and select the system
whose index is inI and has the largest̄Xi(r) as the best.
Otherwise go toUpdate.

Under very general conditions we can show that EFSP
is asymptotically valid asδ→ 0.

4 ANALYSIS

In this section we report on a portion of an extensive
empirical evaluation of ERP, EFSP and EFSPU. For thi
study we focus on the ability of a procedure to terminate
quickly with a correct selection.

In the study we controlled the number of systems
k; the number of first-stage observations,n0; the batch
sizem (or batching sequencemr ); the configuration of the
true means,µi ; and the dependence structure within the
process. In all cases system 1 was the true best (had t
largest true mean). We obtained the simulation output da
from surrogate output processes that allow us to control th
8
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mean and dependence structure of the process, and to
tialize the process in steady state. In this paper we rep
results for the AR(1) process

Xij = µi + φ(Xi,j−1− µi)+ Zj

whereZj
iid∼ N(0, 1− φ2) and−1< φ < 1.

4.1 Configurations and Experiment Design

How strongly the outputs are correlated depends onφ. We
varied φ over the range−0.3,0, 0.3,0.6,0.9 to see the
performance of the new procedures under various levels
correlation.

Whenφ = 0, we have independent data andn0 = 24
is an adequate first-stage sample size to obtain varian
estimators of good quality. However, we need more da
when outputs are highly correlated. To give a fair compariso
across different levels of correlation, we chose the first-sta
sample sizen0 such that the ratio of the variance ofn0

observations (v2(n0) = n0Var[X̄(n0)]) and the asymptotic
variance is approximately equal to 1; more specificall
|1 − v2(n0)/v

2| ≈ 0.01. This guarantees that there is
enough data so that it is possible to estimatev2. After n0

was determined (and it can be determined analytically f
the AR(1) process), all divisors ofn0 were employed as
batch sizesm, implying n0/m batches for BM and A, and
n0 −m+ 1 for OBM.

The number of systems in each experiment varied ov
k = 2, 5,10.

The indifference-zone parameter was set toδ =
v1/
√
n0, wherev2

1 is the asymptotic variance of the bes
system. Thus,δ is approximately the standard deviation o
the first-stage sample mean of the best system.

Two configurations of the true means were used: Th
slippage configuration (SC), in whichµ1 was set toδ, while
µ2 = µ3 = · · · = µk = 0. To investigate the effectiveness
of the procedures in eliminating non-competitive system
monotone decreasing means (MDM) were also used. In t
MDM configuration, the means of all systems were space
evenly apartδ from the previous mean. In all cases we se
the marginal variance of each system to 1.

For each configuration, 1000 macroreplications (com
plete repetitions) of the entire experiment were performe
In all experiments, the nominal probability of correct se
lection (PCS) was set at 1− α = 0.95.

4.2 Summary of Results

Overall, ERP and EFSP worked well while EFSPU did no
The nominal PCS, 1− α, was attained as long as the

batch size was not too small for ERP and EFSP. Tables
and 2 show the sample average of the total number of ba
54
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observations, and the estimated PCS, of ERP and EFS
respectively, when SC configurations were tested and t
outputs were weakly serially correlated. Tables 3 and
show corresponding results when the outputs were high
correlated. Not surprisingly, guaranteeing the nominal PC
required a larger batch size with highly correlated data. Fo
example, the batch size should be larger than 200 wh
φ = 0.9. On the other hand, batches of size 7 could atta
a PCS of at least 1− α whenφ = 0.3.

Tables 5 and 6 show corresponding results when MDM
configurations were tested andφ = 0.9. Note that PCS
under the MDM configuration is higher than under the SC
configuration, as expected.

When there is negative serial correlation, our varianc
estimators tend to overestimate the true variance, causi
the PCS of ERP and EFSP to always exceed the nomin
level (no results are shown here).

Notice that a choice of large batch size, which help
guarantee achieving the nominal PCS, comes at the co
of a very large total number of observations. Both proce
dures incorporate the uncertainty of the variance estimat
(through their respectiveh constants) when calculating the
sampling requirements, with higher uncertainty increasin
the sampling requirements. The large batch-size choi
corresponds to a lower-bias, higher-uncertainty estimator
the variance of the data. The higher bias associated w
the small batch-size choice accounts for the degraded PC
performance.

When the largest possible batch size was chosen, ER
usually required fewer observations than EFSP did. How
ever, as we took smaller batch size, EFSP outperforme
ERP in the sense that the total number of observation
used was smaller, without substantially degrading the PC
performance. ERP is not sensitive to the configuratio
of the means, while EFSP becomes more efficient und
the MDM configuration by effectively eliminating inferior
systems early in the experimentation (see Tables 4 and

To compare the performance of the different varianc
estimators, we used BM, OBM and A (with weighting
functionw(t)). BM and OBM have about the same bias a
estimators of the asymptotic variance, but for largem andb,
OBM’s variance is about 1/3 smaller (Song and Schmeiser
1995). A is first-ordered unbiased, but the variances of BM
and A are about the same. The experiments showed th
the procedures required fewer observations when OBM an
A where employed, instead of BM. The savings were mor
noticeable whenm was large. However, OBM usually had
higher PCS and consumed slightly more observations th
A, which implied a more conservative procedure. On th
other hand, A’s PCS deteriorated somewhat more quick
than OBM’s as the batch size decreased.

Unfortunately, the performance of EFSPU was not good
in our experiments it did not attain the nominal PCS. Th
9
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Table 1: ERP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Proce
Are Tested Withφ = 0.3 andn0 = 70

SC SC
k = 2 k = 5

Observations PCS Observations PCS
m b BM OBM A BM OBM A BM OBM A BM OBM A

70 1 21121 0.970 168628 0.976
35 2 20734 2796 2874 0.968 0.983 0.958 167861 25176 25977 0.976 1.000 0.970
14 5 1292 1028 1108 0.949 0.948 0.945 7507 5441 6040 0.961 0.965 0.957
10 7 1016 894 921 0.948 0.945 0.943 5363 4454 4695 0.957 0.957 0.952
7 10 868 796 781 0.943 0.940 0.935 4328 3818 3842 0.952 0.948 0.942
5 14 770 729 695 0.939 0.937 0.930 3729 3436 3325 0.948 0.940 0.930
2 35 563 554 1007 0.915 0.913 0.967 2638 2574 4689 0.903 0.901 0.981

Table 2: EFSP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR
Processes Are Tested Withφ = 0.3 andn0 = 70

SC SC
k = 2 k = 5

Observations PCS Observations PCS
m b BM OBM A BM OBM A BM OBM A BM OBM A

70 1 9004 0.977 362921 0.968
35 2 8631 1590 1655 0.969 0.987 0.965 346873 17453 17810 0.968 0.998 0.957
14 5 760 665 480 0.958 0.959 0.940 4762 3766 3751 0.962 0.979 0.955
10 7 601 561 537 0.958 0.955 0.936 3193 2907 2818 0.949 0.968 0.945
7 10 508 487 448 0.948 0.946 0.931 2442 2364 2180 0.941 0.956 0.940
5 14 441 432 388 0.934 0.935 0.927 2068 2019 1814 0.936 0.951 0.930
2 35 304 306 575 0.904 0.910 0.970 1345 1344 2503 0.886 0.892 0.980

Table 3: ERP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Pro
Are Tested Withφ = 0.9 andn0 = 1000

SC SC
k = 2 k = 5

Observations PCS Observations PCS
m b BM OBM A BM OBM A BM OBM A BM OBM A

1000 1 71182 0.969 227394 0.974
500 2 70518 38080 37697 0.967 0.982 0.958 227326 197880 182291 0.972 1.000 0.969
250 4 23374 15980 18378 0.949 0.947 0.950 133463 86820 104375 0.961 0.974 0.963
200 5 18379 14875 15874 0.948 0.953 0.948 103709 77466 85710 0.961 0.967 0.960
125 8 13449 12016 12169 0.942 0.939 0.936 69625 59357 60520 0.953 0.949 0.942
100 10 12377 11301 10580 0.947 0.939 0.933 61618 54751 52108 0.952 0.951 0.928
50 20 9742 9409 6331 0.930 0.932 0.886 46466 44112 30072 0.933 0.920 0.838
40 25 9022 8737 5112 0.926 0.918 0.872 42327 40861 24135 0.921 0.923 0.781
25 40 7346 7202 2941 0.911 0.906 0.796 34400 33786 13785 0.885 0.889 0.625
20 50 6558 6472 2291 0.898 0.896 0.769 30566 29969 10227 0.860 0.845 0.541
10 100 4195 4200 2000 0.842 0.844 0.750 19411 19273 5003 0.738 0.730 0.344
8 125 3563 3575 2000 0.822 0.827 0.758 16506 16408 5000 0.680 0.676 0.347
5 200 2448 2435 2000 0.789 0.785 0.759 11276 11212 5000 0.574 0.569 0.344
4 250 2129 2122 2000 0.765 0.763 0.760 9283 9215 5000 0.519 0.518 0.349
2 500 2000 2000 2000 0.763 0.765 0.768 5269 5273 5000 0.381 0.381 0.341
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Table 4: EFSP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Process
Tested Withφ = 0.9 andn0 = 1000

SC SC
k = 2 k = 5

Observations PCS Observations PCS
m b BM OBM A BM OBM A BM OBM A BM OBM A

1000 1 126041 0.959 5095955 0.960
500 2 119560 23306 24074 0.966 0.975 0.968 4874550 244495 250245 0.969 0.998 0.967
250 4 13831 10994 10713 0.956 0.952 0.944 103105 67388 69124 0.964 0.976 0.962
200 5 10915 9588 9475 0.940 0.942 0.942 67271 53183 53352 0.954 0.977 0.965
125 8 7946 7536 7166 0.940 0.939 0.934 40957 37768 34832 0.950 0.968 0.932
100 10 7139 6935 6065 0.931 0.940 0.924 34962 33562 29251 0.942 0.957 0.925
50 20 5437 5424 3558 0.919 0.920 0.869 24843 24554 15173 0.921 0.929 0.818
40 25 4976 4977 2957 0.910 0.916 0.828 22362 22230 11659 0.910 0.913 0.758
25 40 3996 3995 2169 0.885 0.884 0.782 17298 17233 6806 0.892 0.870 0.646
20 50 3615 3613 2054 0.872 0.871 0.766 15061 15051 5702 0.836 0.846 0.579
10 100 2476 2472 2000 0.815 0.809 0.749 8954 8946 5002 0.703 0.707 0.497
8 120 2275 2276 2000 0.788 0.790 0.749 7635 7635 5000 0.670 0.668 0.496
5 200 2064 2063 2000 0.765 0.765 0.749 5847 5850 5000 0.586 0.590 0.496
4 250 2028 2028 2000 0.756 0.755 0.749 5440 5439 5000 0.555 0.554 0.496
2 500 2000 2000 2000 0.749 0.749 0.749 5022 5022 5000 0.499 0.498 0.496

Table 5: ERP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Process
Tested Withφ = 0.9 andn0 = 1000

MDM MDM
k = 2 k = 10

Observations PCS Observations PCS
m b BM OBM A BM OBM A BM OBM A BM OBM A

1000 1 227439 0.990 476269 0.994
500 2 227293 198000 182388 0.989 1.000 0.987 476523 465164 423794 0.995 1.000 0.994
250 4 133365 86683 104241 0.985 0.989 0.988 345137 239476 285257 0.992 0.995 0.994
200 5 103616 77483 85654 0.986 0.987 0.986 284246 211784 239353 0.992 0.996 0.993
125 8 69617 59302 60542 0.986 0.981 0.982 190422 157110 163794 0.990 0.992 0.991
100 10 61562 54751 52103 0.984 0.982 0.976 165393 144198 139748 0.993 0.991 0.988
50 20 46472 44112 30080 0.977 0.976 0.953 121198 114408 78225 0.988 0.986 0.967
40 25 42340 40828 24146 0.976 0.977 0.932 110617 105759 62608 0.988 0.986 0.950
25 40 34384 33786 13783 0.960 0.964 0.865 88956 86658 35666 0.980 0.980 0.906
20 50 30573 29969 10227 0.956 0.956 0.834 79192 77045 26296 0.974 0.970 0.868
10 100 19407 19281 5003 0.915 0.911 0.738 49901 49622 10307 0.942 0.935 0.728
8 125 16507 16401 5000 0.891 0.893 0.735 42459 42178 10000 0.921 0.920 0.724
5 200 11273 11213 5000 0.843 0.846 0.725 28828 28694 10000 0.882 0.878 0.729
4 250 9282 9214 5000 0.817 0.818 0.734 23736 23751 10000 0.850 0.853 0.732
2 500 5270 5273 5000 0.731 0.735 0.722 12765 12759 10000 0.762 0.768 0.736
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Table 6: EFSP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Proces
Tested Withφ = 0.9 andn0 = 1000

MDM MDM
k = 2 k = 10

Observations PCS Observations PCS
m b BM OBM A BM OBM A BM OBM A BM OBM A

1000 1 3094055 0.986 16678305 0.993
500 2 3006572 150354 154090 0.987 1.000 0.985 16863872 394457 384010 0.994 1.000 0.997
250 4 61829 42802 42919 0.985 0.992 0.988 128588 80301 82144 0.990 0.997 0.995
200 5 41548 33898 33358 0.986 0.991 0.988 78519 60704 60317 0.996 0.998 0.993
125 8 25892 23887 22127 0.982 0.987 0.983 44429 40656 38477 0.991 0.995 0.989
100 10 22241 21245 18315 0.978 0.984 0.982 37461 35593 31254 0.995 0.994 0.989
50 20 15727 15773 10534 0.975 0.979 0.943 26254 26087 18296 0.988 0.989 0.962
40 25 14476 14372 8569 0.972 0.975 0.912 23930 23759 15438 0.982 0.984 0.946
25 40 11526 11535 5999 0.958 0.952 0.832 19496 19416 11607 0.974 0.975 0.867
20 50 10286 10268 5380 0.943 0.943 0.785 17666 17636 10710 0.964 0.967 0.809
10 100 7125 7127 5001 0.891 0.891 0.721 13161 13171 10006 0.921 0.918 0.735
8 120 6398 6404 5000 0.863 0.862 0.718 12226 12210 10000 0.899 0.897 0.733
5 200 5486 5485 5000 0.788 0.787 0.718 10873 10872 10000 0.824 0.825 0.732
4 250 5267 5267 5000 0.771 0.773 0.718 10476 10476 10000 0.802 0.802 0.732
2 500 5015 5015 5000 0.725 0.725 0.718 10042 10042 10000 0.744 0.743 0.732
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key factors in the performance of our fully sequential pro
cedures are the variance estimators and the parameterη.
In EFSPU, the computation ofη is based on the assump-
tion that the variance estimator is very close to the tru
asymptotic variance; essentially, we are pretending thatv2

is known. Although this is asymptotically valid asδ→ 0, in
practice it results in a continuation region that is too narrow
leading to a greater than desired chance that good syste
are eliminated. For instance, even with independent da
the PCS of EFSPU was around 0.8. We are investigating
modifications of this procedure that use a larger value ofη

because we believe that variance updating has the poten
to lead to improved procedures.

5 THE FUTURE

The empirical evidence presented here, as well as oth
analysis we have undertaken, convinces us that R&S proc
dures can be applied to steady-state simulation problems
which only a single replication is obtained from each system
Procedure ERP has the advantage that data can be collec
from each system without reference to the others, making
easy to implement in distributed computing environments
EFSP and EFSPU are highly efficient procedures, but the
assume the ability to obtain incremental output data from
each system as needed.

Despite our confidence, there are a number of issue
yet to be resolved:

• The longstanding initialization-bias problem is at
least as critical here as it is in estimating parameter
of a single system.
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• Even assuming the initialization-bias problem is
solved, there is still a fundamental question o
when enough data have been collected to have
statistically valid first-stage sample (what we cal
n0). For ERP and EFSP, enough data must b
collected to have an approximately (scaled) ch
squared variance estimator with low bias. Whe
data are highly dependent this is difficult to de
termine. Since EFSPU updates the variance e
timators, it may be able to overcome errors in
determining an acceptable initial sample size o
batch size provided it does not terminate too earl

• None of the new procedures introduced here d
rectly incorporate the variance reduction techniqu
of common random numbers (CRN). CRN can b
effective at reducing the sample size required t
reach a correct selection, as shown in Kim an
Nelson (2000) for FSP. Because CRN induce
dependence across systems, and we already h
dependence within replications, it becomes difficu
to provide procedures that account for both.
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