
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

VERIFICATION AND VALIDATION OF OBJECT-ORIENTED ARTIFACTS THROUGHOUT
THE SIMULATION MODEL DEVELOPMENT LIFE CYCLE

John T. Carr, III

Naval Surface Warfare Center
Dahlgren Division, Code T12

17320 Dahlgren Road
Dahlgren, VA 22448-5100, U.S.A.

Osman Balci

Department of Computer Science
660 McBryde Hall, MC 0106

Virginia Tech
Blacksburg, VA 24061, U.S.A.
ABSTRACT

The purpose of this paper is to present a series of questions
(or indicators) for assessing the verity and validity of the
artifacts produced during the entire object-oriented
simulation model development life cycle. Using modern
object-oriented development processes, artifacts developed
in one phase flow seamlessly from those of the previous
phase. This provides forward and backward traceability
between artifacts. This inherent backward traceability has
been exploited by tracing defects in artifacts back to their
defective ancestral artifacts. Questions are then phrased
such that when answered in the negative indicate the
presence of defects. Use of the Evaluation Environment
software tool facilitates the integration of the answers to
the assessment questions and enables an overall evaluation.
The collection of questions can be useful for the
verification and validation of artifacts in any object-
oriented simulation model development.

1 INTRODUCTION

A simulation model development life cycle consists of
processes and products. �Process� refers to a series of
activities conducted to create a life-cycle product, such as
engineering the model requirements, designing the model,
or generating the model code. �Product� refers to a
different characterization of the model during its
development life cycle, such as the model requirements
specification, model design specification, or executable
model.

A model characterization is transformed from one
product form (e.g., design) into another (e.g., code) by
carrying out a process (e.g., programming) during the
development life cycle. Verification deals with
transformational accuracy. Validation deals with
representational or behavioral accuracy. Since a model, by
definition, is an abstraction of what it represents, perfect
accuracy cannot be expected. Therefore, the sufficiency of
86
accuracy is judged with respect to the model intended uses
and project objectives.

One of the principles of verification and validation
(V&V) dictates that defects should be detected as early as
possible in the development life cycle (Balci 1997).
However, this is not always achievable and we encounter
many defects in later stages of the life cycle. Identifying
the origin of a defect is very challenging especially if the
defect is found in later stages of the development.

Generally, two approaches are commonly used for
simulation model development: procedural and object-
oriented. In procedural development, the representations of
model requirements, high-level model design, detailed
model design, and executable model are created under
different conceptual frameworks and significantly differ
from each other. The conceptually different model
representations, throughout the development life cycle,
require the modeler to make sophisticated transformations
from one conceptual framework to another. Such
transformations are known to be error-prone and require
much more V&V.

In object-oriented development, on the other hand, the
same conceptual framework is used throughout the entire
development life cycle starting with problem domain
analysis and culminating with the modeling and simulation
(M&S) application. Transformation of object-oriented
model representations from one form into another is
greatly facilitated since the same concepts and
fundamentals are used in all model representations.

In using the object-oriented development approach,
some artifacts are commonly created such as use cases, use
case diagrams, sequence diagrams, and class diagrams.
Modern object-oriented development processes provide
traceability between these artifacts over the span of the
development. Since V&V is not a stage, but a continuous
activity, V&V of the object-oriented artifacts is carried out
throughout the entire development life cycle.

One of the key advantages of the object-oriented
approach is traceability. Traceability between object-
6

Carr, III and Balci
oriented artifacts results in traceability of defects. When a
defect is identified in a model representation form (i.e., an
artifact), it can be traced back, through the sequence of
artifacts, to the origin of the defect in an earlier artifact.
Thus, the artifact in which the defect is first introduced is
identified. Removal of the defect results in the correction
of the artifacts derived from the corrected artifact.
However, stopping at this point would be premature since
it misses the opportunity to make improvements in the
model development process by attempting to identify the
reason(s) why the artifact was defective in the first place
(Texel and Williams 1997). Deming (1986) indicates that
90% of all product defects can be traced to defective
processes.

Software development consists of macroprocesses and
microprocesses. Macroprocesses, such as those comprising
the Unified Method (Booch, Rumbaugh, and Jacobson
1999; Jacobson, Booch, and Rumbaugh 1999; Rumbaugh,
Jacobson, and Booch 1999), have evolved to the point that
they are mature, easy to follow, and are unlikely sources
for defects. Therefore, when defects occur using a
macroprocess we must examine the microprocesses, which
describe the specific steps and factors used to develop an
artifact. We can question the reason why a defect occurred
in terms related to the microprocesses by tracing the defect
back to the artifact in which it was originally introduced.

Software metrics (de Champeaux 1997) allow one to
quantify various properties of object-oriented artifacts.
However, their interpretation requires a history of their use
with a given process by a given organization. Currently,
this is usually lacking. In addition, independent
verification, validation, and accreditation (VV&A) agents
must assess software artifacts developed by a variety of
organizations using a variety of processes. Consequently,
at the present time, software metrics usually do not provide
the VV&A agents with a consistent process for assessing
artifacts. As an alternative, we propose the use of
assessment questions (or indicators).

The remainder of this paper is organized as follows.
The assessment questions are presented in Section 2.
Section 3 discusses the evaluation of answers to the
assessment questions using the Evaluation Environment�
software tool. Completeness of the assessment questions is
discussed in Section 4. Conclusions are given in Section 5.

2 V&V USING ARTIFACT ASSESSMENT
QUESTIONS

Questions (also called indicators) are developed in terms of
the microprocesses for use cases, use case diagrams,
sequence diagrams, and class diagrams. Given an artifact
for a simulation model under development, the questions
can be applied to verify and validate the artifact before it is
used to develop subsequent artifacts.
86
2.1 V&V of Use Cases

A use case describes a single use of a system, including
alternatives and exceptions, by one or more actors. Among
other formats suitable for documenting use cases include
those of Texel and Williams (1997, pp. 46-49), Larman
(1998, pp. 55-63), or the formal syntax presented by de
Champeaux (1997, pp. 86-87). Through our inspection of
artifacts it has been determined that defects are more likely
to occur when different formats are used within the same
project. Therefore, the first set of assessment questions for
use cases is:

1. Is the use case diagram drawn using a standard
template?

2. Do actors and use cases follow a standard naming
convention and format?

All of the previously mentioned formats contain a
form of user action and system response, which are
repeated over and over. The user action is performed by an
actor. The format clearly indicates that the actor should not
be part of the system. An example of a defect of this type is
using a database as an actor. A database is not a user of a
system. It is part of a system. The result is defective
sequence diagrams that have no clear indication of the start
of the use case. This leads to four additional assessment
questions for use cases:

3. Are the actors external to the system?
4. Are the actors external to the use case boundary?
5. Does an action by a user start each use case?
6. Is the start of each use case unambiguous?

The previous use case questions deal with the issue of
structural correctness of use cases. The following questions
assess the ability of a use case to capture a subset of the
system requirements:

7. Does the use case make sense?
8. Does the use case accurately represent the

behavior specified in the requirements?
9. Does the use case cover all paths including

decisions, alternates, and exceptions?
10. Are the preconditions correct?
11. Does the use case produce useful and appropriate

results, i.e., are the post conditions correct?
12. Are the requirements captured by the use case

specified?
13. Should similar use cases be combined into a

single use case?
14. Should the use case and associated requirements

be divided into several requirements and use
cases?
7

Carr, III and Balci
15. Is each functional requirement associated with at
least one use case?

16. Are use cases sharing one or more functional
requirements consistent?

17. Can the use case be tested?

2.2 V&V of Use Case Diagrams

It is important that each use case diagram be consistent
with the corresponding use case. This consistency can be
assessed through the application of the following
questions:

1. Is there a use case diagram for each use case?
2. Are all use case diagrams drawn using the same,

preferably the UML diagramming notation?
3. Is each actor represented in the use case diagrams

in which it is involved?
4. Should similar use case diagrams be combined

using use case associations such as extension of a
use case and the use of a use case by another?

2.3 V&V of Sequence Diagrams

The following questions are created from the required
traceability between the use cases and sequence diagrams.

1. Are the sequence diagrams drawn using a
consistent, preferably UML, notation?

2. Is there a use case from which the sequence
diagram derives?

3. Is there an actor that initiates each sequence
diagram the same one that initiates the use case
from which it is derived?

4. Are all nouns, noun phrases, and verbs that imply
creation represented as objects?

5. Does the diagram have a meaningful termination?
6. Do all of the objects present in the sequence

diagram have associated classes in the design
class diagram?

7. Do the diagrams include alternatives and
exceptions?

8. Is there at least one sequence diagram for each use
case?

2.4 V&V of Class Diagrams

Aside from the source code itself, the class diagram is
probably the most important artifact related to the
maintainability of object-oriented software. The design
class diagram contains the pattern for what is implemented
in code. The constraints imposed on relationships between
classes as specified in the class diagram determine how the
software can be modified, extended, and reused. Where
possible class diagrams should be based on design patterns
86
(Gamma et al. 1995). These are patterns that demonstrate
proven relationships between classes that address specific
design problems.

1. Is the class diagram drawn using UML?
2. Do all sequence diagram objects have associated

classes in the class diagrams?
3. Are design patterns used to create associations for

common relationships?
4. Are there classes other than containers for which

there are no corresponding objects in the class
diagrams?

5. Are classes present not traceable to the
requirements or use cases?

6. Are roles identified?
7. Are redundant classes present?
8. Are multiplicities shown and correct?
9. Are containment and aggregation used properly in

the diagram?
10. Are container, boundary, control, association,

service, and creator classes that do not correspond
to objects in the problem domain avoided?

The inheritance class model can be assessed by
answering the following questions:

1. Is each derived class �a kind of� its base class?
2. Does each derived class implement one or more

base class operations?
3. Can a derived class object be used wherever an

instance of the base class is used?
4. When multiple inheritance is used, are all

ambiguities addressed?

The design class diagram can be assessed by
answering the following questions:

1. Is the design class diagram consistent with the
conceptual model?

2. Are roles identified?
3. Are multiplicities specified?
4. Are containment and aggregation present in the

diagram?
5. Are container, boundary, control, association,

service, and creator classes that do not correspond
to objects in the problem domain present?

6. Do the classes have low coupling?
7. Do the classes have high cohesion?
8. Are attributes mistaken for classes?

3 EVALUATION OF ANSWERS TO THE
ASSESSMENT QUESTIONS

The Evaluation Environment� (EE) (Orca 1999) software
tool can be used to facilitate subject matter expert (SME)
8

Carr, III and Balci
evaluation using the assessment questions. This tool lets
SMEs evaluate the importance of a �yes� or �no� answer to
each assessment question and then aggregates the
individual assessments to obtain an overall assessment.
This allows consideration of the importance of a �no�
answer to a question to the overall assessment of the
completeness, correctness, clearness, and consistency for
an artifact.

In the case of multiple inheritance, some SMEs
believe that multiple inheritance should never be used
while other SMEs disagree. When assessing the use of
multiple inheritance in an artifact, the EE tool can provide
for consideration of these varied opinions and
corresponding evaluations in a quantitative manner as
opposed to a subjective approach.

Different SME judgments are integrated in the EE tool
by using relative criticality weighting of SMEs. Weights
are used to express an SME�s level of influence in the
integration of all SME judgments. A weight is a fractional
value between zero and one. The weights of the SMEs
being compared must sum to one.

Given a list of n SMEs, it is very difficult to come up
with numerical weights especially when n > 5. To facilitate
the relative criticality weighting, the mathematical
approach called Analytic Hierarchy Process (AHP) is
commonly used in the multicriteria decision making field
(Saaty 1994). AHP enables pairwise comparisons of
importance between the SMEs and computes the weights
based on the pairwise comparison values using methods
such as Eigenvalue method, Mean Transformation method,
and Row Geometric Mean method.

Figure 1 depicts the relative criticality weighting of
five SMEs, by using the EE tool, in the integration of their
judgments on the usefulness of multiple inheritance for a
given artifact. Clicking on a matrix cell displays the
pairwise comparison of the corresponding two SMEs.
Using the sliding bar, a judgment of relative importance is
specified. Any of the three techniques can be selected from
the pull-down menu for the EE tool to calculate the
numerical weights by using AHP. Selecting the Eigenvalue
method for the pairwise comparisons shown in Figure 1,
we obtain the numerical weights shown in Figure 2, which
is created as a Kiviat graph by the EE tool.

4 COMPLETENESS OF THE ASSESSMENT
QUESTIONS

The assessment questions above were developed and tested
through applications to the following software systems:

1. ICU2: Satellite coverage software (Carr 1988).
(The use case and use case diagram assessment
questions were not applied to ICU2.)

2. Ranger: Satellite tracking data simulator (Carr
1994b)
869
Figure 1: Relative Criticality Weighting of SMEs

SME One
(0.372)

SME Two
(0.315)

SME Three
(0.147)

SME Four
(0.111)

SME Five
(0.055)

Figure 2: Kiviat Graph Illustrating the Criticality
Weighting of SMEs

3. Alert: Tracking station scheduler program (Carr
1994a)

4. ASTER: Advanced satellite trajectory estimation
routines (Carr 1992)

5. SWIPE: Simple windows programming
environment (a Motif-based class library) (Carr
1993)

6. HFSS: High fidelity system simulation (missile
defense simulation)

7. LIDS: Lead system integrator integration
distributed simulation (missile defense
simulation)

Carr, III and Balci
Thus the assessment questions have been demon-
strated to be suitable for assessment of problems in the
scientific problem domain. However, since the aspects of
the artifacts assessed by the questions are generic
properties desirable in object-oriented artifacts, they should
also be applicable in other application domains.

UML defines eight types of diagrams: use case, class,
sequence, activity, statechart, collaboration, component,
and deployment (Binder 2000). The software projects used
in developing the assessment questions only produced use
case, class, sequence, activity, and state transition
diagrams. Even all of these projects did not produce all of
the diagrams mentioned. As a result, assessment questions
for state transition diagrams and activity diagrams have not
been fully developed. No questions have been developed
for collaboration, component, and deployment diagrams.

5 CONCLUSIONS

The verity and validity of object-oriented artifacts can be
assessed through the application of a series of assessment
questions. These questions assess correctness,
completeness, consistency, clarity, and testability of each
artifact. Using these questions, defects can be identified
early in the development life cycle and the VV&A agent
can provide corrective feedback to the M&S application
developer before the defect is propagated through the
remainder of the development life cycle. Use of the EE
software tool facilitates the overall assessment of artifacts
based on SME responses to the assessment questions.

REFERENCES

Balci, O. 1997. Principles of simulation model validation,
verification, and testing. Transactions of the Society
for Computer Simulation International 14 (1): 3-12.

Binder, R.V. 2000. Testing object-oriented systems:
models, patterns, and tools. Addison-Wesley,
Reading, MA.

Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The
unified modeling language user guide. Addison-
Wesley, Reading, MA.

Carr, J.T. 1988. ICU2: satellite coverage software. Naval
Surface Warfare Center, Dahlgren, VA.

Carr, J.T. 1992. ASTER: advanced satellite trajectory
estimation routines. Naval Surface Warfare Center,
Dahlgren, VA.

Carr, J.T. 1993. SWIPE: simple windows programming
environment. Naval Surface Warfare Center,
Dahlgren, VA.

Carr, J.T. 1994a. Alert: tracking station scheduler
program. Naval Surface Warfare Center, Dahlgren,
VA.

Carr, J.T. 1994b. Ranger: satellite tracking data simulator.
Naval Surface Warfare Center, Dahlgren, VA.
87
de Champeaux, D. 1997. Object-oriented development
process and metrics. Prentice-Hall, Upper Saddle
River, NJ.

Deming, W.E. 1986. Out of the crisis. Center for Advanced
Engineering, Massachusetts Institute of Technology,
Cambridge, MA.

Gamma, E., R. Helm, R. Johnson, and J.M. Vlissides.
1995. Design patterns: elements of reusable object-
oriented software. Addison-Wesley, Reading, MA.

Jacobson, I., G. Booch, and J. Rumbaugh. 1999. The
unified software development process. Addison-
Wesley, Reading, MA.

Larman, C. 1998. Applying UML and patterns, Prentice-
Hall, Englewood Cliffs, NJ.

Lorenz, M. and J. Kidd. 1994. Object oriented software
metrics. Prentice-Hall, Upper Saddle River, NJ.

Orca 1999. Evaluation environment user�s guide. Orca
Computer, Blacksburg, VA.

Rumbaugh, J., I. Jacobson, and G. Booch. 1999. The
unified modeling language reference manual.
Addison-Wesley, Reading, MA.

Saaty, T.L. 1994. Fundamentals of decision making and
priority theory with the analytic hierarchy process.
RWS Publications, Pittsburgh, PA.

Texel, P.P. and C.B. Williams. 1997. Use cases combined
with Booch/OMT/UML: process and products.
Prentice-Hall Canada, Toronto, Ontario, Canada.

AUTHOR BIOGRAPHIES

JOHN T. CARR, III is a Scientist at the Naval Surface
Warfare Center, Dahlgren Division. He received his M.S.
degree from Virginia Tech in 1985. From 1973 to 1995
Mr. Carr worked on the research and development of space
systems. His areas of expertise include space system
simulation development, formulation of satellite orbit
determination algorithms, satellite force model
development, space system visualization, object oriented
software development, and Modeling and Simulation
Verification, Validation, and Accreditation. Since 1996
Mr. Carr has worked on missile defense systems.
Currently, Mr. Carr is lead for Simulation Verification,
Validation, and Accreditation within the National Missile
Defense Verification and Validation Program at the Naval
Surface Warfare Center. His e-mail address is <CarrJT@
nswc.navy.mil>.

OSMAN BALCI is Professor of Computer Science at
Virginia Tech and President of Orca Computer, Inc. He
received his Ph.D. degree from Syracuse University in
1981. Dr. Balci is the Editor-in-Chief of two international
journals: Annals of Software Engineering and World Wide
Web; Verification, Validation and Accreditation (VV&A)
Area Editor of ACM Transactions on Modeling and
Computer Simulation; and Modeling and Simulation
0

Carr, III and Balci
(M&S) Category Editor of ACM Computing Reviews. He
serves as a member of the Winter Simulation Conference
Board of Directors representing the Society for Computer
Simulation. Most of Dr. Balci�s research has been funded
by DoD since 1983. Recently, he has provided technical
services for the National Missile Defense (NMD) program
in the areas of NMD system design M&S VV&A and
NMD system design IV&V. His current research interests
center on VV&A, IV&V, certification, quality assurance,
and credibility assessment of (a) M&S applications, (b)
software systems, and (c) complex software / hardware /
humanware system designs. His e-mail and web addresses
are <balci@vt.edu> and <http://manta.cs.vt.
edu/balci>
871

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

