
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A MODEL-BASED APPROACH FOR COMPONENT SIMULATION DEVELOPMENT

Perakath Benjamin
Dursun Delen
Richard Mayer

Knowledge Based Systems, Inc.

1408 University Drive East
College Station, TX 77840, U.S.A.

Timothy O�Brien

John F. Kennedy Space Center, NASA
Kennedy Space Center, FL 32899, U.S.A.

ABSTRACT

The increasing complexity of systems has enhanced the use
of simulation as a decision-support tool. Often, simulation is
the only scientific methodology available to practitioners for
the analysis of complex systems. However, only a small
fraction of the practical benefits of simulation modeling and
analysis have reached the potentially large user community
because of the relatively high requirement of time, effort,
and cost needed to build and successfully use simulation
models. In this paper we describe a model-based approach
that seeks to address these problems via the implementation
of MODELSIM��a comprehensive modeling and analysis
architecture that includes (i) application of the IDEF3 and
IDEF5 methods for simulation modeling and analysis
specification, (ii) automatic generation of executable
component-based simulations from IDEF-based descriptive
models, and (iii) reusable libraries of modeling components
to facilitate rapid configuration of models as needed over
extended periods of time.

1 MOTIVATION

The increasing complexity of systems has enhanced the use
of simulation as a decision-support tool. Often, simulation
is the only scientific methodology available to practitioners
for the analysis of complex systems. However, only a
small fraction of the potential practical benefits of
simulation modeling and analysis have reached the
potentially large user community because of the relatively
high requirement of time, effort, and cost needed to build
and successfully use simulation models.

Current simulation practice (i) is afforded little
automated support for the initial analysis, problem solving,
and design tasks which are largely qualitative in nature, (ii)
involves the unproductive use of time from both the domain
expert and the simulation analyst in many routine tasks, and
(iii) suffers lack of widespread acceptance by decision
makers due to a number of factors including a) the semantic

gap between the description of a system internalized by the
decision maker and the abstract model constructed by the
simulation modeler, b) the relatively long lead times and
communication efforts required to produce a simulation
model, and c) the extensive training and skill required for the
effective design and use of simulation modeling techniques
(Erraguntla 1994, Delen et al. 1998).

Recent advances in the area of simulation modeling
have focused on improving simulation modeling
languages. These advances have attempted to reduce the
semantic gap between a simulation model design and the
corresponding executable simulation program. They
represent important advances for improving the
productivity of simulation modelers, but do little to aid the
non-simulation-trained decision-maker. This situation is
analogous to traditional CAD systems that aid a draftsman
in the production of part drawings but provide no support
for the actual design decisions behind those specifications.

This paper describes our model-based approach that
seeks to address the above listed problems via
MODELSIM��a comprehensive modeling and analysis
architecture that includes (i) application of the IDEF3 and
IDEF5 methods (KBSI 1994, KBSI 1995) for simulation
modeling and analysis specification, (ii) automatic gener-
ation of executable component-based simulations from
IDEF-based descriptive models, and (iii) reusable libraries
of modeling components to facilitate rapid configuration of
models as needed over extended periods of time.

Section 2 describes the model-based solution concept.
The MODELSIM concept of operation is described in
Section 3. Section 4 summarizes the MODELSIM
architecture. Section 5 outlines the prototype MODELSIM
implementation. The benefits of the research and
opportunities for further work are outlined in Section 6.

2 SOLUTION CONCEPT

A key solution concept underlying our MODELSIM
architecture is the individuation of three levels of

1831

Benjamin, Delen, Mayer, and O�Brien

abstraction to facilitate simulation modeling and analysis.
These three levels are (i) Domain Level, (ii) Design Level,
and (iii) Execution and Analysis Level (Figure 1).

The Domain Level refers to the collection of structured
knowledge that encapsulates information about the
problem area that is targeted by the simulation modeling
and analysis effort. We assume that this information is
available in a structured and re-usable form, for example,
IDEF5 ontology models and IDEF3 process models.

The Design Level refers to the collection of models
that specify the operation of the different phases of the
simulation modeling and analysis effort. In particular these
models provide a specification for simulation input
analysis, simulation model execution, simulation
experiment specification, and simulation-driven search and
optimization specification.
 The Execution and Analysis Level refers to the
collection of data and information that is generated by the
execution of simulations, analysis, and optimizations. This
information is generated by simulation engines,
experimental analysis tools, output analysis tools, and
search and optimization tools.
 Separation of levels enables different kinds of re-use
and provides the conceptual framework for component-
based simulation. Maintaining structured domain models
facilitates re-use over multiple domains (e.g.,
manufacturing, logistics, sales, military mission planning,
threat assessment, etc.). Maintaining simulation model
specifications enables re-use across multiple simulation

execution and analysis tools (e.g. different vendor tools
and components may be used for different simulation tasks
(input data analysis, simulation execution, experiment
analysis, simulation output analysis, optimization, etc.).
The latter type of re-use allow simulation end users to
switch between multiple component simulation tools for
different tasks in the simulation life cycle (that is, �plug
and play� using multiple simulation tools and utilities).

3 CONCEPT OF OPERATION

The activities supported by the MOSIM solution
architecture and the relationships between these activities
are illustrated in Figure 2.

3.1 Select Domain Models

An important first step is to select appropriate domain
models from the domain model library. The domain
models provide structured information about the domain of
interest that will be used to construct the simulation model.
Re-use of organized domain knowledge increases the
efficiency of the modeling process through better
knowledge management. It reduces dependence on human
domain experts. Domain knowledge, once captured and
stored in a library, can be repeatedly re-used for different
simulation models. Two kinds of domain models are
useful�IDEF3 process models and IDEF5 ontology models
(Figure 3 and Figure 4).

DOMAIN
ANALYSIS

MODEL
SPECIFICATION

EXECUTION &
ANALYSIS

! Ontology Descriptions
! Process Descriptions

! Input Specifications
! Simulation Specifications
! Experiment Specifications
! Optimization Specifications

! Input Data Analysis
! Simulation Execution
! Experiment Analysis
! Optimization Analysis

Domain
Level

Design
Level

Analysis
Level

Figure 1: Separation of Levels Extends Reuse Scope

1832

Benjamin, Delen, Mayer, and O�Brien

Figure 2: MODELSIM Concept of Operation

Award
Contract

5Accept
Proposal for
Options

4

Accept
Proposal for
Core Contract

3

Reject
Proposal

2Evaluate
Proposal

1
X

OO

Figure 3: Example IDEF3 Process Flow Diagram

Local

Administrator

Resource

Tech
writer

Programmer

Tech
support

specialist

Computer
SystemPersonnel Facility Quadra

486
Machine Pentium

Machine Sun
Sparcstation

IBM
RISC 6000

Older
model

Centris

Remote80x86
Architecture

Unix
Workstation

Macintosh

Figure 4: Example IDEF5 Classification Schematic

3.2 Design Conceptual Model

The construction of a conceptual or structural model is
typically carried out by an analyst as an undocumented
thought process rather than as an explicitly represented
design activity. In addition to hindering the modeling
effort, the lack of a facility to explicitly represent the
conceptual model design also creates problems in re-use
of such designs. In practice, the final executable model is
often the only model documentation that exists, since
none of the thought processes followed in model design,
nor the assumptions made, are documented anywhere in a
systematic manner.

In order to tackle these problems and to better
support the entire modeling process, we need to not only
understand the cognitive processes involved in the
modeling process, but also need a way of explicitly
representing and reasoning with both the process and the
output of the process, i.e., the conceptual model itself.
We developed an adaptation of the IDEF3 process
modeling language for conceptual simulation model
design, called the IDEF3 Conceptual Modeling Language
(I3CML). I3CML provides the development of
conceptual simulation models from two perspectives (i)
process-centered perspective (using the IDEF3 process
flow mechanisms) and (ii) object-centered perspective
(using the IDEF3 object state transition mechanisms).
I3CML includes a rich library of re-usable generic
simulation process types that can be tailored for particular
simulation application domains using the IDEF3 and
IDEF5 domain models described earlier. I3CML
simulation process types are shown in Table 1.

1833

Benjamin, Delen, Mayer, and O�Brien

Table 1: Example I3CML Simulation Process Types
Simulation

Process Type Description

Create/Destroy

A process that creates or destroys
objects in the simulation model.
Typically the objects created are flow
objects (entities).

Transformation

A process that transforms an object
in the simulation model. Subtypes of
this process include Assembly,
Disassembly, Cloning, Batching, and
Simple State Change.
Transformation process types
encapsulate commonly re-occurring
behavior types in a variety of
application domains.

Transportation A process that physically moves
objects from one location to another.

Logical

A process that facilitates logical
operations in the model. Subtypes
include attribute value change and
decision logic assignment

The I3CML object-centered modeling artifacts are

based on the IDEF3 object state transition schematics.
These allow for the description of behavior by describing
the relevant object states, specifying the allowable
transitions between these states, and defining the conditions
governing these transitions. An example I3CML diagram
that illustrates state transitions for a �resource� object type
is shown in Figure 5.

Resource:
Busy

Resource:
Idle

Resource:
Down

Resource:
In-Repair

Figure 5: I3CML Object State Transition Diagram

 The conceptual modeling process comprises several
inter-related activities that are described in the following
paragraphs.

3.2.1 Determine/Classify Modeling Objective

An important first step in the development of the
conceptual model is to determine the specific goals of the
simulation study based on the �question/demand for
decision data� given by the domain expert. The capture
of the question statement as an unstructured description.
Consequently, there is a need to refine it further in order
to extract the specific goals of the study.
 The process of refinement, which is performed by the
analyst, is based primarily on his interpretation of the
query statement and a reasoning mechanism to map this
interpretation into a specific goal(s). This reasoning
process is often a combination of qualitative and rule-
based mechanisms. This reasoning uses the analyst�s past
experience and knowledge, but also makes extensive use
of the constraints of the current description. During the
course of such reasoning, the analyst often needs
additional information or clarifications from the domain
expert in order to clearly identify the user requirements.

The modeling objective plays a key role in
determining the structure of the model to be developed, as
well as in establishing the boundaries of the system to be
analyzed, the level of detail to be included in the model,
and the performance measure(s) to be estimated from
running the simulation model, as further detailed in the
following sections.

3.2.2 Determine Object Roles, Boundary

and Level of Detail

" Establishment of model boundaries. One of the early
activities in developing the conceptual model is the
selection of the part of the system to be studied. The
choice of boundaries is very closely linked to the
specific goals of the analysis. This decision about
boundaries is an important step since it gives
perspective to the entire simulation study. As it turns
out, a description is partial including only those
portions of the system which are of special interest to
the domain expert. While this might provide clues as
to the boundaries chosen for the model, it might
occasionally also become necessary to either ask for
additional information about the system or to exclude
parts of the description from the boundaries. The
reasoning process in mapping the analysis goals to
the boundaries is based mainly on the analyst�s
common sense and domain knowledge.

" Establishment of level of abstraction. Once the
boundaries of the model have been chosen, the
analyst proceeds to select the level of abstraction to
be used in modeling the system elements that are
included within the boundaries. This activity is
significantly impacted by the goals of the analysis.
Our observation is that while doing this, the analyst

1834

Benjamin, Delen, Mayer, and O�Brien

adopted this simple principle: Include only those
elements of a system that are relevant to the ob-
jective, and do so at the highest level of abstraction.
One of the problems observed in carrying out this
activity was that it is often difficult to tell which
portions of the system will have an influence on the
key performance measures of interest. Another
principle which was observed in practice is: When in
doubt about whether to include a particular
subsystem, include it in the model.

" Identification of model objects and roles. This step
refers to the selection of objects from the description
to be included in the simulation model and the
specific role that these objects will play in the model.
Our research indicates that the reasoning mechanisms
involved in carrying out these activities are rather
unstructured and hence difficult to make explicit.

3.3 Design Simulation Experiments

3.3.1 Design Strategic Experiment Plan

Designing a strategic experiment plan refers to the
process of 1) deciding upon the metrics which evaluate
the performance of the simulation model with respect to
the goals of the study, 2) designing instrumentation to
generate the data needed to evaluate the performance
metrics, and 3) specifying the strategic plan of
experiments to generate this data at minimum cost.
 The performance measures of the simulation model
often do not directly give insights or answers to the query
posed by the domain expert. However the purpose of
building the simulation model in the first place was to
provide the information required to answer the domain
expert�s query. Thus, the query (which is often correlated
to the business goals of the domain expert) needs to be
mapped onto the performance metrics to be estimated by
the simulation model. For example, consider the
following query from a manufacturing manager: �How
can I streamline my production?� An underlying business
goal which may have prompted this query could be that of
improving utilization levels of bottleneck machines. Thus
this query could be mapped onto performance metrics
which will measure resource utilization within the
manufacturing system. Our research indicates that the
knowledge needed to support the above process includes
awareness of the specific domain and simulation
modeling expertise and that the mechanism of generating
this mapping often requires expertise in qualitative
reasoning.
 Once the performance metrics have been specified,
the simulation model has to be instrumented to facilitate
the capture of data needed to calculate these metrics. This
involves installing probes into the model which would
help collect data over time and then process it into

meaningful observations of model behavior. The
reasoning involved in the design and placement of
appropriate probes is often straightforward and could be
expressed in terms of a set of simple rules.
 Once the performance metrics have been chosen and
appropriate probes have been designed, we need to
generate a systematic plan of experiments which would
enable the model to be executed at different experimental
conditions so that the relationships between the
performance metrics and the independent variables of the
model can be investigated. These relationships would in
turn focus attention on a subset of variables which have a
significant effect on the value of the performance
measures. These form the basis for the suggestion of
possible answers to the domain expert�s query.
 A key issue in determining the plan of experiments is
the cost of experimentation. The chosen experimental
plan needs to generate the needed information with the
minimum number of experiments. In addition to
providing efficiency of experimentation, a scientific plan
of experiments ensures that the analysis done with the
output is statistically valid. An intimate knowledge of the
science and art of the statistical design of experiments, in
addition to domain-specific knowledge, is necessary to
design the (statistical) plan of experiments.

3.3.2 Design Tactical Experiment Plan

The tactical experiment plan refers to those activities,
which determine the detailed experiment specifications of
each individual simulation run. The major decisions
taken at the tactical planning stage include determining
the length of each simulation run and the number of runs
for each experimental condition. Early in this process, a
decision whether to treat the simulation as either
�terminating� or �non-terminating� must be made (Law
and Kelton 1991). Briefly, the distinction is based on
whether we are interested in the steady state or the
transient behavior of the model. Often, this decision can
be made based on previous knowledge of the domain
behavior and some knowledge of statistics. However, in
some instances it might be necessary to execute a
preliminary model and perform some analysis of the
output. If the latter is required, we need to go ahead with
the construction of the detailed model. Once we decide
whether the simulation is terminating or non-terminating,
we can proceed with the determination of the run length
and the number of runs. These calculations are based pri-
marily on statistical procedures (Law and Kelton 1991).

3.3.3 Formulate Optimization Design

Finally, a search-based optimization model is formulated.
The search-based optimization techniques supported by
MODELSIM are Simulated Annealing (SA) and Genetic

1835

Benjamin, Delen, Mayer, and O�Brien

Algorithms (GA). Optimization using SA and GA
involves the specification of search and optimization
architecture and parameters. Automated support is
provided for this activity in order to shield the end user
from the complexities of SA and GA design. An example
MODELSIM Optimization Design user interface screen is
shown in Figure 6.

Figure 6: Search-Based Optimization Interface

 MODELSIM automatically generates executable
code that is interpreted by an optimization engine that
performs search-based optimization.

3.4 Develop Detailed Simulation Model

The detailed simulation model design involves formulating,
verifying and validating the model structure and logic.

3.4.1 Design Model Structure and Logic

Model structure and logic refers to a characterization of
the relations between activities in the model. An activity
represents the dynamic behavior that comes about when
objects interact with each other. The model structure
refers to the characterization of this dynamic behavior.
For instance, if an activity is a manufacturing process,
then its characterization will relate to specifying its
processing time, which qualifies the behavior that occurs
when a part is processed on a machine. There are two
types of model logic - flow logic and decision logic. Flow
logic is the specification of the flow path of all the objects
through the system. Decision logic refers to the set of
methods used to choose between alternative state
transitions, which characterize the dynamic behavior of
the system. For example, the specific scheduling rule
used to load a machine with parts in a manufacturing
system will be part of the decision logic for that system.

Typically, an analyst starts by constructing a skeletal
representation of the structure and logic. With reference
to the elements of the I3CML language, the structure and
flow logic is typically associated with process boxes and

decision logic maps onto junctions. The modeling
constructs associated with a process box are related to the
dynamic behavior of the objects, which are contained
within it. The decision logic that is associated with
junctions can be of three kinds: probabilistic, conditional
or deterministic (Pegden et. al 1990, Pritsker 1986).
System information such as the part routings, schedules,
distance between stations, and starting conditions, needs
to be incorporated into the model structure and logic
wherever possible. If such information is not included in
the description, it may have to be gathered with the help
of the domain expert or may be found in the query
statement itself. The model structure and logic will be
successively refined in a stepwise manner until the
conceptual model is complete.

3.4.2 Verify and Validate Model

Model verification and validation are important activities
that are carried out once the simulation design reaches a
satisfactory level of completion. Model verification is
ascertaining whether the model behaves as intended by
the designer. This task is often performed incrementally
during simulation model design. Verification is based on
common sense rules that evaluate model completeness
and consistency. Model validation is ascertaining
whether the model is a reasonable abstraction of the real
world system it is intended to represent (Philips et al.
1976). MODELSIM provides automated support for
model verification. The end user will have to validate the
model using (i) analysis data generated by the
environment, (ii) domain information provided in the
domain models, and (iii) input from human experts
familiar with the real world system being studied.

3.5 Execute Simulation

The simulation model specification is used to generate
executable simulation code that is interpretable by a
simulation engine. Our research shows that it is useful to
represent the simulation model specification in an
intermediate form before actually translating it to
executable simulation code. This intermediate and
neutral model specification is useful for two reasons:

1. To provide greater expressiveness to the intent of
the model/modeler. State-of-the-art simulation
languages do not provide an adequate degree of
expressiveness, in the sense that the model as it
exists in the mind of the modeler is quite
different from the model as encoded in a
traditional simulation language.

2. To provide a neutral representation of the model.
The main advantage of building a neutral
specification is that it gives the analyst the

1836

Benjamin, Delen, Mayer, and O�Brien

freedom of choosing from a variety of possible
target simulation languages. This gives the
analyst flexibility since different target languages
are inherently advantageous for specific classes
of models. For instance, a language that is
effective for discrete simulation may be
inappropriate for continuous simulation.

The simulation experiments are executed and output data
is collected. Animations of the execution provide visual
feedback to the modeler and provide a mechanism to
communicate dynamic aspects of the represented system
to the end user. The MODELSIM simulation engine
component provides this functionality.

3.6 Analyze Output and Optimize

3.6.1 Analyze Output

Output analysis refers to the detailed analysis of output
leading to the generation of data for decision making.
Output analysis bridges the model-building and the
decision-making processes. Output analysis involves a
variety of activities, including (i) formulating appropriate
output metrics, (ii) identifying and quantifying output
correlation, (iii) statistical estimation (averages and
confidence intervals), (iv) initialization bias elimination.
Component statistical analysis tools provide the output
analysis capability in MODELSIM.

3.6.2 Perform Optimization

Sensitivity analysis and optimization provide additional
information for decision making. MODELSIM facilitates
search-based optimization that uses simulation as a
performance measurement mechanism. The Simulated
Annealing (SA) and Genetic Algorithms (GA) specifications
developed during the design phase are used to automatically
generate executable code (see Section 3.3). The optimization
code is interpreted by the MODELSIM optimization engine
that performs search-based optimization.

4 MODELSIM ARCHITECTURE

The solution architecture is shown in Figure 7.

4.1 Domain Analysis Tools and Domain Libraries

The domain analysis tools and the domain libraries
provide a mechanism to capture and re-use domain
knowledge for simulation modeling. The use of domain
models reduces the dependence on scarce and often
expensive domain experts over the life cycle of the
modeling effort. The domain modeling and analysis tools
include (i) Ontology Modeler: for the acquisition, and
analysis of domain ontologies using the IDEF5 method;
and (ii) Process Modeler: for the acquisition and analysis
of domain process descriptions using the IDEF3 Method.

Simulation
Libraries

DOMAIN DESCRIPTION TOOLS

PROCESS MODELERONTOLOGY MODELER

SIMULATION DESIGN TOOLS

EXPERIMENT
DESIGNER

STATISTICS
MODELER

OPTIMIZATION
DESIGNER

EXECUTION & ANALYSIS TOOLS

SIMULATION
ENGINE

EXPERIMENT
ANALYZER

STATISTICS
ANALYZER

OPTIMIZATION
ENGINE

Ontology
Libraries

Process
Libraries

Simulation
Libraries Optimization

Libraries

SIMULATION
DESIGNER

Figure 7: MODELISM Architecture

1837

Benjamin, Delen, Mayer, and O�Brien

The Ontology and Process Libraries are maintained to
facilitate effective reuse.

4.2 Simulation Design Tools

Information from the domain analysis tools is transferred
automatically to the simulation model tools using a set of
translators. The Simulation Designer facilitates (a) the
design of the conceptual simulation model using I3CML,
(ii) the design of the detailed simulation model using the
I3CML, and (iii) automatic generation of executable
simulation code in different target simulation languages.
The Experiment Designer facilitates (a) Strategic
Experiment Design and (b) Tactical Experiment Design.
The Statistics Modeler enables (i) simulation input data
modeling (including data validation and data repair) and (ii)
simulation output data analysis. The Optimization Modeler
facilitates simulation-based optimization using Genetic
Algorithms (GA) and Simulated Annealing (SA). The
specifications of the GA and SA are automatically
translated to executable optimization models that are
processed by the Optimization Engine. Simulation based
optimization is an iterative search process that involves the
simulation modeler, the experiment designer, the
simulation engine, and the optimization engine (Figure 8).

Simulation
Modeler

Simulation
Engine

Experiment
Manager

Optimization
Engine (GA/SA)

Figure 8: Simulation-Based Optimization

4.3 Execution and Analysis Tools

We use the term Execution and Analysis Tools to refer to
the collection of component-based tools that facilitate the
execution of simulation experiments, collection and
analysis of output data, and the generation of optimal
solutions using simulation-based search methods. The
execution and analysis tools therefore �run� the models,
code, and data that are automatically generated by the
Simulation Modeling Tools. The tools in this collection
include (i) Simulation Engine, (ii) Experiment Analyzer,
(iii) Output Analyzer, and (iv) Optimization Engine.
Separating these components allows end users to mix and

match different vendor components that best addresses
the modeling objectives over extended periods of time.
 Finally, we note that a subset of the architecture
described in this section has been prototyped and is being
currently used on several research and development
projects.

5 PROTOTYPE IMPLEMENTATION

A prototype MODELSIM implementation is currently
under development. This implementation includes the
following components: (i) IDEF5 Ontology Modeler, (ii)
IDEF3 Process Modeler, (iii) Simulation Model Designer,
(iv) Experiment Designer, (v) Optimization Designer, (vi)
Discrete-Event Simulation Engine, and (vii) GA Enabled
Optimization Engine. These components are being
developed in Visual Basic and C++ using Microsoft�s
OLE, COM+ and ActiveX technologies. A JAVA-based
3D-animation interface is being developed to facilitate the
visualization of the simulation execution on the World
Wide Web. These components are being configured
based on a number of focused applications at NASA
Kennedy Space Center and at Tinker Air Force Base.

6 RESEARCH BENEFITS AND FUTURE

WORK OPPORTUNITIES

6.1 Research Benefits

The benefits of the research described in this paper are
summarized in the following.

6.1.1 Reduced Simulation Lifecycle Costs

MODELSIM technology will significantly reduce the
time, effort, and cost required to develop, deploy, and
maintain simulation models. This benefit will accrue
through increased re-use of simulation life cycle
information at the domain level and at the design level
over extended periods of time. The model-based
approach will enable future simulationists to rapidly
deploy simulations starting from libraries of domain
models and simulation models.

6.1.2 Enhanced Communication Between Domain

Expert and Simulation Expert

The automated generation of executable analysis models
from domain models will bridge the semantic gap
between domain experts and simulation analysts. This
enhanced flow of information application domain models
and simulation models will increase the effectiveness of
the communication required over the simulation
development life cycle.

1838

Benjamin, Delen, Mayer, and O�Brien

6.1.3 Simulation Agility

The capacity to generate simulation analysis software
components from domain models and design models will
allow end users to mix and match different simulation tools
for any given application problem situation. MODELSIM
will enable end-users to rapidly and cost effectively
reconfigure the simulation tool architecture in response to
constantly changing problem needs and requirements. We
refer to this capability gain as enhanced simulation agility.

6.1.4 Future Work Opportunities

The following areas provide opportunities for future work
in component based simulation (i) development of
component based simulation reference architectures, (ii)
development of domain libraries and simulation model
libraries, and (iii) development of component analysis
tools and simulation agents.

ACKNOWLEDGMENTS

The research described in this paper was partly supported
by NASA Small Business Innovation Research (SBIR)
Contract Number NAS10-97002.

REFERENCES

Delen, D., P. Benjamin, and M. Erraguntla. 1998.

Integrated modeling and analysis generator
environment: a decision support tool. In Proceedings
of the 1998 Winter Simulation Conference, 140H408:
Institute of Electronics and Electrical Engineering,
Piscataway, New Jersey.

Erraguntla, M., P. C. Benjamin, R. J. Mayer. 1994. An
architecture of a knowledge-based simulation engine.
In Proceedings of the 1994 Winter Simulation
Conference, 673-680. Institute of Electronics and
Electrical Engineering, Piscataway, New Jersey.

Knowledge Based Systems, Inc. (KBSI). 1994. IDEF5
Ontology Description Capture Method Report. Infor-
mation Integration for Concurrent Engineering (IICE),
College Station, TX. <http://www. idef.com>.

Knowledge Based Systems, Inc. (KBSI). 1995. IDEF3
Process Description Capture Method Report. Infor-
mation Integration for Concurrent Engineering (IICE),
College Station, TX. <http://www. idef.com>.

Law, A. M., W. D. Kelton. 1991. Simulation Modeling &
Analysis. McGraw-Hill, Inc. New York, NY.

Pegden, C. D., R. E. Shannon, R. Sadowski. 1990.
Introduction to Simulation Using SIMAN. McGraw-
Hill, Inc., Hightstown, NJ.

Phillips, D. T., A. Ravindran, J. Solberg. 1976.
Operations Research: Principles and Practice. John
Wiley & Sons, Inc. New York.

Pritsker, A. A. 1986. Introduction to Simulation and
SLAM II. John Wiley & Sons, Inc., New York.

AUTHOR BIOGRAPHIES

PERAKATH C. BENJAMIN is the Vice President of
Research at Knowledge Based Systems, Inc., College
Station, Texas. He received his Master�s degree in Industrial
Engineering from the National Institute for Training in 1983
and his Ph.D. in Industrial Engineering from Texas A & M
University in 1991. He has over 14 years of professional
experience in systems analysis, design, development, testing,
documentation, deployment and training. Dr. Benjamin is
the principal investigator or project manager for a number of
NSF, DOD and NASA projects.

DURSUN DELEN is a Research Scientist at Knowledge
Based Systems, Inc., College Station, Texas. He received
his BS and MS degrees in Industrial Engineering in 1986
and 1988 respectively. After working for industry for
several years, he studied towards and earned his Ph.D.
degree in Industrial Engineering and Management from
Oklahoma State University, Stillwater, Oklahoma, in
1997. He has more than six years of industrial experience
in information systems analysis and design. His research
interests include systems modeling, discrete event
simulation, object-oriented modeling, knowledge
representation and artificial intelligence.

RICHARD J. MAYER received a Master of Science
degree in Industrial Engineering from Purdue University
in 1977and Ph.D. in Industrial Engineering from Texas
A&M University in 1988. He became an assistant
professor of Industrial Engineering at Texas A&M in
1989, and was promoted to associate professor with
tenure in 1994. From 1984 to 1997, Dr. Mayer was
Project Manager and Principal Investigator on 54 funded
research efforts at Texas A&M University�s Knowledge
Based Systems Laboratory. Currently Dr. Mayer is
President and Senior Research Scientist at KBSI.

TIMOTHY O�BRIEN is currently a Lead Industrial
Engineer assigned to the Project Office in the Space
Shuttle Processing Directorate at the Kennedy Space
Center in Florida. He earned a MS in Computer
Simulation at the University of Central Florida in 1991.
He has been employed by NASA since 1988. He has held
various assignments in Shuttle Operations, which have
included Operations Engineer, NASA Test Director and
Ground Operations Manager. He has also worked in the
Engineering Development Directorate as a Computer
Engineer. Prior to NASA, Tim was Naval Officer with
assignments aboard the USS GARCIA (FF-1040), at
NAVCOMMSTA Harold E. Holt in Australia, and at
Marine Corps Air Station, El Toro, CA.

1839

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

