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ABSTRACT  
 
The increasing complexity of systems has enhanced the use 
of simulation as a decision-support tool.  Often, simulation is 
the only scientific methodology available to practitioners for 
the analysis of complex systems.  However, only a small 
fraction of the practical benefits of simulation modeling and 
analysis have reached the potentially large user community 
because of the relatively high requirement of time, effort, 
and cost needed to build and successfully use simulation 
models.  In this paper we describe a model-based approach 
that seeks to address these problems via the implementation 
of MODELSIM��a comprehensive modeling and analysis 
architecture that includes (i) application of the IDEF3 and 
IDEF5 methods for simulation modeling and analysis 
specification, (ii) automatic generation of executable 
component-based simulations from IDEF-based descriptive 
models, and (iii) reusable libraries of modeling components 
to facilitate rapid configuration of models as needed over 
extended periods of time. 
 
1 MOTIVATION 
 
The increasing complexity of systems has enhanced the use 
of simulation as a decision-support tool.  Often, simulation 
is the only scientific methodology available to practitioners 
for the analysis of complex systems.  However, only a 
small fraction of the potential practical benefits of 
simulation modeling and analysis have reached the 
potentially large user community because of the relatively 
high requirement of time, effort, and cost needed to build 
and successfully use simulation models.   

Current simulation practice (i) is afforded little 
automated support for the initial analysis, problem solving, 
and design tasks which are largely qualitative in nature, (ii) 
involves the unproductive use of time from both the domain 
expert and the simulation analyst in many routine tasks, and 
(iii) suffers lack of widespread acceptance by decision 
makers due to a number of factors including a) the semantic 

gap between the description of a system internalized by the 
decision maker and the abstract model constructed by the 
simulation modeler, b) the relatively long lead times and 
communication efforts required to produce a simulation 
model, and c) the extensive training and skill required for the 
effective design and use of simulation modeling techniques 
(Erraguntla 1994, Delen et al. 1998). 

Recent advances in the area of simulation modeling 
have focused on improving simulation modeling 
languages.  These advances have attempted to reduce the 
semantic gap between a simulation model design and the 
corresponding executable simulation program.  They 
represent important advances for improving the 
productivity of simulation modelers, but do little to aid the 
non-simulation-trained decision-maker.  This situation is 
analogous to traditional CAD systems that aid a draftsman 
in the production of part drawings but provide no support 
for the actual design decisions behind those specifications. 

This paper describes our model-based approach that 
seeks to address the above listed problems via 
MODELSIM��a comprehensive modeling and analysis 
architecture that includes (i) application of the IDEF3 and 
IDEF5 methods (KBSI 1994, KBSI 1995) for simulation 
modeling and analysis specification, (ii) automatic gener-
ation of executable component-based simulations from 
IDEF-based descriptive models, and (iii) reusable libraries 
of modeling components to facilitate rapid configuration of 
models as needed over extended periods of time. 

Section 2 describes the model-based solution concept.  
The MODELSIM concept of operation is described in 
Section 3.  Section 4 summarizes the MODELSIM 
architecture.  Section 5 outlines the prototype MODELSIM 
implementation.  The benefits of the research and 
opportunities for further work are outlined in Section 6. 

 
2 SOLUTION CONCEPT 
 
A key solution concept underlying our MODELSIM 
architecture is the individuation of three levels of 
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abstraction to facilitate simulation modeling and analysis.  
These three levels are (i) Domain Level, (ii) Design Level, 
and (iii) Execution and Analysis Level (Figure 1). 

The Domain Level refers to the collection of structured 
knowledge that encapsulates information about the 
problem area that is targeted by the simulation modeling 
and analysis effort.  We assume that this information is 
available in a structured and re-usable form, for example, 
IDEF5 ontology models and IDEF3 process models. 

The Design Level refers to the collection of models 
that specify the operation of the different phases of the 
simulation modeling and analysis effort.  In particular these 
models provide a specification for simulation input 
analysis, simulation model execution, simulation 
experiment specification, and simulation-driven search and 
optimization specification. 
 The Execution and Analysis Level refers to the 
collection of data and information that is generated by the 
execution of simulations, analysis, and optimizations.  This 
information is generated by simulation engines, 
experimental analysis tools, output analysis tools, and 
search and optimization tools. 
 Separation of levels enables different kinds of re-use 
and provides the conceptual framework for component-
based simulation.  Maintaining structured domain models 
facilitates re-use over multiple domains (e.g., 
manufacturing, logistics, sales, military mission planning, 
threat assessment, etc.).  Maintaining simulation model 
specifications enables re-use across multiple simulation  

execution and analysis tools (e.g. different vendor tools 
and components may be used for different simulation tasks 
(input data analysis, simulation execution, experiment 
analysis, simulation output analysis, optimization, etc.).  
The latter type of re-use allow simulation end users to 
switch between multiple component simulation tools for 
different tasks in the simulation life cycle (that is, �plug 
and play� using multiple simulation tools and utilities). 

 
3 CONCEPT OF OPERATION 
 
The activities supported by the MOSIM solution 
architecture and the relationships between these activities 
are illustrated in Figure 2. 
 
3.1 Select Domain Models 
 
An important first step is to select appropriate domain 
models from the domain model library.  The domain 
models provide structured information about the domain of 
interest that will be used to construct the simulation model.  
Re-use of organized domain knowledge increases the 
efficiency of the modeling process through better 
knowledge management.  It reduces dependence on human 
domain experts.  Domain knowledge, once captured and 
stored in a library, can be repeatedly re-used for different 
simulation models. Two kinds of domain models are 
useful�IDEF3 process models and IDEF5 ontology models 
(Figure 3 and Figure 4). 
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Figure 1:  Separation of Levels Extends Reuse Scope 
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Figure 2:  MODELSIM Concept of Operation
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Figure 3:  Example IDEF3 Process Flow Diagram 
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Figure 4:  Example IDEF5 Classification Schematic 

3.2 Design Conceptual Model 
 
The construction of a conceptual or structural model is 
typically carried out by an analyst as an undocumented 
thought process rather than as an explicitly represented 
design activity.  In addition to hindering the modeling 
effort, the lack of a facility to explicitly represent the 
conceptual model design also creates problems in re-use 
of such designs. In practice, the final executable model is 
often the only model documentation that exists, since 
none of the thought processes followed in model design, 
nor the assumptions made, are documented anywhere in a 
systematic manner. 

In order to tackle these problems and to better 
support the entire modeling process, we need to not only 
understand the cognitive processes involved in the 
modeling process, but also need a way of explicitly 
representing and reasoning with both the process and the 
output of the process, i.e., the conceptual model itself.  
We developed an adaptation of the IDEF3 process 
modeling language for conceptual simulation model 
design, called the IDEF3 Conceptual Modeling Language 
(I3CML).  I3CML provides the development of 
conceptual simulation models from two perspectives (i) 
process-centered perspective (using the IDEF3 process 
flow mechanisms) and (ii) object-centered perspective 
(using the IDEF3 object state transition mechanisms).  
I3CML includes a rich library of re-usable generic 
simulation process types that can be tailored for particular 
simulation application domains using the IDEF3 and 
IDEF5 domain models described earlier. I3CML 
simulation process types are shown in Table 1. 
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Table 1:  Example I3CML Simulation Process Types 
Simulation  

Process Type Description 

Create/Destroy 

A process that creates or destroys 
objects in the simulation model.  
Typically the objects created are flow 
objects (entities). 

Transformation 

A process that transforms an object 
in the simulation model.  Subtypes of 
this process include Assembly, 
Disassembly, Cloning, Batching, and 
Simple State Change.  
Transformation process types 
encapsulate commonly re-occurring 
behavior types in a variety of 
application domains. 

Transportation A process that physically moves 
objects from one location to another. 

Logical 

A process that facilitates logical 
operations in the model.  Subtypes 
include attribute value change and 
decision logic assignment 

 
The I3CML object-centered modeling artifacts are 

based on the IDEF3 object state transition schematics.  
These allow for the description of behavior by describing 
the relevant object states, specifying the allowable 
transitions between these states, and defining the conditions 
governing these transitions.  An example I3CML diagram 
that illustrates state transitions for a �resource� object type 
is shown in Figure 5. 
 

Resource:
Busy

Resource:
Idle

Resource:
Down

Resource:
In-Repair

 
Figure 5:  I3CML Object State Transition Diagram 

 
 The conceptual modeling process comprises several 
inter-related activities that are described in the following 
paragraphs. 

 

3.2.1 Determine/Classify Modeling Objective 
 
An important first step in the development of the 
conceptual model is to determine the specific goals of the 
simulation study based on the �question/demand for 
decision data� given by the domain expert.  The capture 
of the question statement as an unstructured description.  
Consequently, there is a need to refine it further in order 
to extract the specific goals of the study. 
 The process of refinement, which is performed by the 
analyst, is based primarily on his interpretation of the 
query statement and a reasoning mechanism to map this 
interpretation into a specific goal(s).  This reasoning 
process is often a combination of qualitative and rule-
based mechanisms.  This reasoning uses the analyst�s past 
experience and knowledge, but also makes extensive use 
of the constraints of the current description.  During the 
course of such reasoning, the analyst often needs 
additional information or clarifications from the domain 
expert in order to clearly identify the user requirements.  

The modeling objective plays a key role in 
determining the structure of the model to be developed, as 
well as in establishing the boundaries of the system to be 
analyzed, the level of detail to be included in the model, 
and the performance measure(s) to be estimated from 
running the simulation model, as further detailed in the 
following sections. 

 
3.2.2 Determine Object Roles, Boundary  

and Level of Detail 
 

" Establishment of model boundaries. One of the early 
activities in developing the conceptual model is the 
selection of the part of the system to be studied.  The 
choice of boundaries is very closely linked to the 
specific goals of the analysis.  This decision about 
boundaries is an important step since it gives 
perspective to the entire simulation study.  As it turns 
out, a description is partial including only those 
portions of the system which are of special interest to 
the domain expert.  While this might provide clues as 
to the boundaries chosen for the model, it might 
occasionally also become necessary to either ask for 
additional information about the system or to exclude 
parts of the description from the boundaries.  The 
reasoning process in mapping the analysis goals to 
the boundaries is based mainly on the analyst�s 
common sense and domain knowledge.   

" Establishment of level of abstraction. Once the 
boundaries of the model have been chosen, the 
analyst proceeds to select the level of abstraction to 
be used in modeling the system elements that are 
included within the boundaries.  This activity is 
significantly impacted by the goals of the analysis.  
Our observation is that while doing this, the analyst 
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adopted this simple principle: Include only those 
elements of a system that are relevant to the ob-
jective, and do so at the highest level of abstraction.  
One of the problems observed in carrying out this 
activity was that it is often difficult to tell which 
portions of the system will have an influence on the 
key performance measures of interest.  Another 
principle which was observed in practice is: When in 
doubt about  whether to include a particular 
subsystem, include it in the model. 

" Identification of model objects and roles. This step 
refers to the selection of objects from the description 
to be included in the simulation model and the 
specific role that these objects will play in the model.  
Our research indicates that the reasoning mechanisms 
involved in carrying out these activities are rather 
unstructured and hence difficult to make explicit. 

 
3.3 Design Simulation Experiments 
 
3.3.1 Design Strategic Experiment Plan   
 
Designing a strategic experiment plan refers to the 
process of 1) deciding upon the metrics which evaluate 
the performance of the simulation model with respect to 
the goals of the study, 2) designing instrumentation to 
generate the data needed to evaluate the performance 
metrics, and 3) specifying the strategic plan of 
experiments to generate this data at minimum cost.  
 The performance measures of the simulation model 
often do not directly give insights or answers to the query 
posed by the domain expert.  However the purpose of 
building the simulation model in the first place was to 
provide the information required to answer the domain 
expert�s query.  Thus, the query (which is often correlated 
to the business goals of the domain expert) needs to be 
mapped onto the performance metrics to be estimated by 
the simulation model.  For example, consider the 
following query from a manufacturing manager: �How 
can I streamline my production?�  An underlying business 
goal which may have prompted this query could be that of 
improving utilization levels of bottleneck machines.  Thus 
this query could be mapped onto performance metrics 
which will measure resource utilization within the 
manufacturing system.  Our research indicates that the 
knowledge needed to support the above process includes 
awareness of the specific domain and simulation 
modeling expertise and that the mechanism of generating 
this mapping often requires expertise in qualitative 
reasoning. 
 Once the performance metrics have been specified, 
the simulation model has to be instrumented to facilitate 
the capture of data needed to calculate these metrics.  This 
involves installing probes into the model which would 
help collect data over time and then process it into 

meaningful observations of model behavior.  The 
reasoning involved in the design and placement of 
appropriate probes is often straightforward and could be 
expressed in terms of a set of simple rules. 
 Once the performance metrics have been chosen and 
appropriate probes have been designed, we need to 
generate a systematic plan of experiments which would 
enable the model to be executed at different experimental 
conditions so that the relationships between the 
performance metrics and the independent variables of the 
model can be investigated.  These relationships would in 
turn focus attention on a subset of variables which have a 
significant effect on the value of the performance 
measures.  These form the basis for the suggestion of 
possible answers to the domain expert�s query.   
 A key issue in determining the plan of experiments is 
the cost of experimentation.  The chosen experimental 
plan needs to generate the needed information with the 
minimum number of experiments.  In addition to 
providing efficiency of experimentation, a scientific plan 
of experiments ensures that the analysis done with the 
output is statistically valid.  An intimate knowledge of the 
science and art of the statistical design of experiments, in 
addition to domain-specific knowledge, is necessary to 
design the (statistical) plan of experiments. 

 
3.3.2 Design Tactical Experiment Plan 
 
The tactical experiment plan refers to those activities, 
which determine the detailed experiment specifications of 
each individual simulation run.  The major decisions 
taken at the tactical planning stage include determining 
the length of each simulation run and the number of runs 
for each experimental condition.  Early in this process, a 
decision whether to treat the simulation as either 
�terminating� or �non-terminating� must be made (Law 
and Kelton 1991).  Briefly, the distinction is based on 
whether we are interested in the steady state or the 
transient behavior of the model.  Often, this decision can 
be made based on previous knowledge of the domain 
behavior and some knowledge of statistics.  However, in 
some instances it might be necessary to execute a 
preliminary model and perform some analysis of the 
output.  If the latter is required, we need to go ahead with 
the construction of the detailed model.  Once we decide 
whether the simulation is terminating or non-terminating, 
we can proceed with the determination of the run length 
and the number of runs.  These calculations are based pri-
marily on statistical procedures (Law and Kelton 1991). 
 
3.3.3 Formulate Optimization Design  
 
Finally, a search-based optimization model is formulated.  
The search-based optimization techniques supported by 
MODELSIM are Simulated Annealing (SA) and Genetic 
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Algorithms (GA).  Optimization using SA and GA 
involves the specification of search and optimization 
architecture and parameters.  Automated support is 
provided for this activity in order to shield the end user 
from the complexities of SA and GA design.  An example 
MODELSIM Optimization Design user interface screen is 
shown in Figure 6. 

 
Figure 6:  Search-Based Optimization Interface 

 
 MODELSIM automatically generates executable 
code that is interpreted by an optimization engine that 
performs search-based optimization. 
 
3.4 Develop Detailed Simulation Model 
 
The detailed simulation model design involves formulating, 
verifying and validating the model structure and logic. 
 
3.4.1 Design Model Structure and Logic   
 
Model structure and logic refers to a characterization of 
the relations between activities in the model.  An activity 
represents the dynamic behavior that comes about when 
objects interact with each other.  The model structure 
refers to the characterization of this dynamic behavior.  
For instance, if an activity is a manufacturing process, 
then its characterization will relate to specifying its 
processing time, which qualifies the behavior that occurs 
when a part is processed on a machine.  There are two 
types of model logic - flow logic and decision logic.  Flow 
logic is the specification of the flow path of all the objects 
through the system.  Decision logic refers to the set of 
methods used to choose between alternative state 
transitions, which characterize the dynamic behavior of 
the system.  For example, the specific scheduling rule 
used to load a machine with parts in a manufacturing 
system will be part of the decision logic for that system.   

Typically, an analyst starts by constructing a skeletal 
representation of the structure and logic.  With reference 
to the elements of the I3CML language, the structure and 
flow logic is typically associated with process boxes and 

decision logic maps onto junctions.  The modeling 
constructs associated with a process box are related to the 
dynamic behavior of the objects, which are contained 
within it.  The decision logic that is associated with 
junctions can be of three kinds: probabilistic, conditional 
or deterministic (Pegden et. al 1990, Pritsker 1986).  
System information such as the part routings, schedules, 
distance between stations, and starting conditions, needs 
to be incorporated into the model structure and logic 
wherever possible.  If such information is not included in 
the description, it may have to be gathered with the help 
of the domain expert or may be found in the query 
statement itself.  The model structure and logic will be 
successively refined in a stepwise manner until the 
conceptual model is complete.   

 
3.4.2 Verify and Validate Model   
 
Model verification and validation are important activities 
that are carried out once the simulation design reaches a 
satisfactory level of completion.  Model verification is 
ascertaining whether the model behaves as intended by 
the designer.  This task is often performed incrementally 
during simulation model design.  Verification is based on 
common sense rules that evaluate model completeness 
and consistency.  Model validation is ascertaining 
whether the model is a reasonable abstraction of the real 
world system it is intended to represent (Philips et al. 
1976).  MODELSIM provides automated support for 
model verification.  The end user will have to validate the 
model using (i) analysis data generated by the 
environment, (ii) domain information provided in the 
domain models, and (iii) input from human experts 
familiar with the real world system being studied. 
 
3.5 Execute Simulation 
 
The simulation model specification is used to generate 
executable simulation code that is interpretable by a 
simulation engine.  Our research shows that it is useful to 
represent the simulation model specification in an 
intermediate form before actually translating it to 
executable simulation code.  This intermediate and 
neutral model specification is useful for two reasons: 
 

1. To provide greater expressiveness to the intent of 
the model/modeler. State-of-the-art simulation 
languages do not provide an adequate degree of 
expressiveness, in the sense that the model as it 
exists in the mind of the modeler is quite 
different from the model as encoded in a 
traditional simulation language.   

2. To provide a neutral representation of the model.  
The main advantage of building a neutral 
specification is that it gives the analyst the 
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freedom of choosing from a variety of possible 
target simulation languages. This gives the 
analyst flexibility since different target languages 
are inherently advantageous for specific classes 
of models.  For instance, a language that is 
effective for discrete simulation may be 
inappropriate for continuous simulation. 

 
The simulation experiments are executed and output data 
is collected.  Animations of the execution provide visual 
feedback to the modeler and provide a mechanism to 
communicate dynamic aspects of the represented system 
to the end user.  The MODELSIM simulation engine 
component provides this functionality. 
 
3.6 Analyze Output and Optimize 
 
3.6.1 Analyze Output  
 
Output analysis refers to the detailed analysis of output 
leading to the generation of data for decision making.  
Output analysis bridges the model-building and the 
decision-making processes.  Output analysis involves a 
variety of activities, including (i) formulating appropriate 
output metrics, (ii) identifying and quantifying output 
correlation, (iii) statistical estimation (averages and 
confidence intervals), (iv) initialization bias elimination.  
Component statistical analysis tools provide the output 
analysis capability in MODELSIM. 
 

3.6.2 Perform Optimization  
 
Sensitivity analysis and optimization provide additional 
information for decision making.  MODELSIM facilitates 
search-based optimization that uses simulation as a 
performance measurement mechanism.  The Simulated 
Annealing (SA) and Genetic Algorithms (GA) specifications 
developed during the design phase are used to automatically 
generate executable code (see Section 3.3).  The optimization 
code is interpreted by the MODELSIM optimization engine 
that performs search-based optimization. 
 
4 MODELSIM ARCHITECTURE 
 
The solution architecture is shown in Figure 7. 
 
4.1 Domain Analysis Tools and Domain Libraries 
 
The domain analysis tools and the domain libraries 
provide a mechanism to capture and re-use domain 
knowledge for simulation modeling.  The use of domain 
models reduces the dependence on scarce and often 
expensive domain experts over the life cycle of the 
modeling effort.  The domain modeling and analysis tools 
include (i) Ontology Modeler: for the acquisition, and 
analysis of domain ontologies using the IDEF5 method; 
and (ii) Process Modeler: for the acquisition and analysis 
of domain process descriptions using the IDEF3 Method.  

Simulation
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SIMULATION DESIGN TOOLS
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Libraries

Process
Libraries

Simulation
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Figure 7:  MODELISM Architecture 

1837



Benjamin, Delen, Mayer, and O�Brien 
 

The Ontology and Process Libraries are maintained to 
facilitate effective reuse. 
 
4.2 Simulation Design Tools 
 
Information from the domain analysis tools is transferred 
automatically to the simulation model tools using a set of 
translators.  The Simulation Designer facilitates (a) the 
design of the conceptual simulation model using I3CML, 
(ii) the design of the detailed simulation model using the 
I3CML, and (iii) automatic generation of executable 
simulation code in different target simulation languages.  
The Experiment Designer facilitates (a) Strategic 
Experiment Design and (b) Tactical Experiment Design.  
The Statistics Modeler enables (i) simulation input data 
modeling (including data validation and data repair) and (ii) 
simulation output data analysis.  The Optimization Modeler 
facilitates simulation-based optimization using Genetic 
Algorithms (GA) and Simulated Annealing (SA).  The 
specifications of the GA and SA are automatically 
translated to executable optimization models that are 
processed by the Optimization Engine.  Simulation based 
optimization is an iterative search process that involves the 
simulation modeler, the experiment designer, the 
simulation engine, and the optimization engine (Figure 8). 
 

Simulation
Modeler

Simulation
Engine

Experiment
Manager

Optimization
Engine (GA/SA)

 
Figure 8:  Simulation-Based Optimization 

 
4.3 Execution and Analysis Tools 
 
We use the term Execution and Analysis Tools to refer to 
the collection of component-based tools that facilitate the 
execution of simulation experiments, collection and 
analysis of output data, and the generation of optimal 
solutions using simulation-based search methods.  The 
execution and analysis tools therefore �run� the models, 
code, and data that are automatically generated by the 
Simulation Modeling Tools.  The tools in this collection 
include (i) Simulation Engine, (ii) Experiment Analyzer, 
(iii) Output Analyzer, and (iv) Optimization Engine.  
Separating these components allows end users to mix and  

match different vendor components that best addresses 
the modeling objectives over extended periods of time.
 Finally, we note that a subset of the architecture 
described in this section has been prototyped and is being 
currently used on several research and development 
projects. 
 
5 PROTOTYPE IMPLEMENTATION 
 
A prototype MODELSIM implementation is currently 
under development.  This implementation includes the 
following components: (i) IDEF5 Ontology Modeler, (ii) 
IDEF3 Process Modeler, (iii) Simulation Model Designer, 
(iv) Experiment Designer, (v) Optimization Designer, (vi) 
Discrete-Event Simulation Engine, and (vii) GA Enabled 
Optimization Engine.  These components are being 
developed in Visual Basic and C++ using Microsoft�s 
OLE, COM+ and ActiveX technologies.  A JAVA-based 
3D-animation interface is being developed to facilitate the 
visualization of the simulation execution on the World 
Wide Web.  These components are being configured 
based on a number of focused applications at NASA 
Kennedy Space Center and at Tinker Air Force Base. 
 
6 RESEARCH BENEFITS AND FUTURE  

WORK OPPORTUNITIES 
 
6.1 Research Benefits 
 
The benefits of the research described in this paper are 
summarized in the following. 
 
6.1.1 Reduced Simulation Lifecycle Costs 
 
MODELSIM technology will significantly reduce the 
time, effort, and cost required to develop, deploy, and 
maintain simulation models.  This benefit will accrue 
through increased re-use of simulation life cycle 
information at the domain level and at the design level 
over extended periods of time.  The model-based 
approach will enable future simulationists to rapidly 
deploy simulations starting from libraries of domain 
models and simulation models. 
 
6.1.2 Enhanced Communication Between Domain 

Expert and Simulation Expert 
 
The automated generation of executable analysis models 
from domain models will bridge the semantic gap 
between domain experts and simulation analysts.  This 
enhanced flow of information application domain models 
and simulation models will increase the effectiveness of 
the communication required over the simulation 
development life cycle. 
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6.1.3 Simulation Agility 
 
The capacity to generate simulation analysis software 
components from domain models and design models will 
allow end users to mix and match different simulation tools 
for any given application problem situation. MODELSIM 
will enable end-users to rapidly and cost effectively 
reconfigure the simulation tool architecture in response to 
constantly changing problem needs and requirements.  We 
refer to this capability gain as enhanced simulation agility. 
 
6.1.4 Future Work Opportunities 
 
The following areas provide opportunities for future work 
in component based simulation (i) development of 
component based simulation reference architectures, (ii) 
development of domain libraries and simulation model 
libraries, and (iii) development of component analysis 
tools and simulation agents. 
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