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ABSTRACT  
 
The field of infectious disease epidemiology has increas-
ingly adopted stochastic simulation technologies to 
simulate complex infectious disease transmission systems. 
Such simulations have both increased the scientific under-
standing of infectious disease transmission dynamics and 
served as important tools for evaluating epidemiologic 
study designs and statistical methods. This paper reports on 
a discrete-event simulation to analyze the recently develop-
ed Retrospective Partner Trials (RPT) HIV vaccine trial 
design. A specially designed simulation system, HIVSIM, 
was used to simulate data resulting from the RPT design 
vaccine trials. HIVSIM explicitly models complex HIV 
transmission dynamics (e.g., sexual partner mixing patterns 
and concurrent sexual partnerships) and vaccine trial 
design characteristics. Monte Carlo simulation analyses 
conducted with HIVSIM indicate that the RPT design is 
able to produce vaccine effect estimates with acceptably 
small bias, high precision and excellent statistical power 
under plausible HIV vaccine trial conditions. Additionally, 
the explicit simulation of HIV transmission dynamics 
permits investigations into the common, but unwarranted, 
statistical independence assumptions routinely used in the 
estimation of vaccine effects.  
 
1 INTRODUCTION 
 
1.1 Simulation Background 
 
Within the field of infectious disease epidemiology, com-
puter simulation techniques have increasingly been 
employed to model the spread of infectious diseases within 
human populations (Ackerman 1984, Mollison 1995, 
Isham and Medley 1996). These dynamic epidemic simula-
tions are typically used to advance scientific understanding 
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of how the interactions of individuals create a transmission 
system that allows the infectious agent to spread within a 
human population.  Such simulations are also increasingly 
employed for the purposes of evaluating epidemiologic 
study designs and statistical methods (Boily and Anderson 
1996, Barth-Jones 1999)  

This paper reports on the use of one such simulation to 
evaluate an HIV vaccine trial design. The evaluation of the 
vaccine trial design was accomplished by performing a 
Monte Carlo simulation experiment. The data for the 
experiment was generated by HIVSIM, a computer pro-
gram that simulates HIV vaccine trials conducted in a 
homosexual mixing population.  HIVSIM explicitly 
models characteristics of the HIV transmission system and 
HIV vaccine trial design that could not be easily investi-
gated using mathematical models and differential equation-
based compartmental models (Anderson and May 1991, 
Jacquez 1996, Adams et al. 1998). The experiment 
reported here is distinguished from more typical biostatis-
tical Monte Carlo experiments by the fact that explicit 
simulation of causal processes produced the experimental 
outcome events. In contrast, typical Monte Carlo experi-
ments commonly draw outcome events from known 
standard probability distributions in order to determine the 
sampling distributions of the parameters being estimated 
(Mooney 1997). Although Monte Carlo experiments in 
which transmission dynamics are explicitly simulated are 
not new (Fox et al. 1971), such experiments have recently 
seen increased use. The explicit simulation of transmission 
dynamics has recently allowed researchers to address 
statistical estimation and study design issues related to: 1) 
sexually transmitted diseases (STDs) as risk factors for 
HIV infection (Boily and Anderson 1996); 2) the effects of 
social networks on the spread of STDs (Ghani et al. 1998); 
and 3) HIV vaccine effect estimation (Longini et al. 1998, 
Barth-Jones et al. 1998, Desai et al. 1999). 
85



Barth-Jones, Adams, and Koopman 
 

1.2 Epidemiologic Background 
 
In the more than 15 years since the discovery of HIV, the 
HIV/AIDS pandemic has continued to expand relentlessly 
and has now become the fourth leading cause of death in 
the world and the leading cause of death on the continent 
of Africa (Balter 1999). The United Nations AIDS pro-
gram, UNAIDS, has estimated that at least as many as 6 
million new HIV infections are now occurring each year 
(Balter 1999). Such statistics highlight the vital importance 
that an effective prophylactic HIV vaccine could have in 
achieving control over this worldwide epidemic. Toward 
this end, Phase III clinical trials to assess the protective 
efficacy of a candidate HIV vaccine based on recombinant 
envelope glycoprotein (gp) 120 began in 1998 in the 
United States and in 1999 in Thailand (Francis et al. 1998).  

However, HIV vaccines may not fully protect against 
HIV infection in all individuals. If this proves to be the 
case, then it will be important to recognize that even 
vaccines that fail to prevent HIV infection in all individuals 
could have beneficial effects. On an individual level, the 
vaccine could delay or prevent the onset of AIDS; while on 
the population level, the vaccine might reduce the 
infectiousness to others for individuals who are infected 
despite vaccination (Koopman and Little 1995).  

Such issues have motivated several recent publications 
in which vaccine effects that reduce the infectiousness of 
those vaccinated are addressed (Longini et al. 1996, Rida 
1996, Datta et al. 1998, Longini et al. 1999, Barth-Jones 
1999). Vaccine effects resulting in the reduction of the 
infectiousness of vaccinated individuals are termed Vaccine 
Effects on Infectiousness (VEI).  Vaccine effects that reduce 
the susceptibility of an individual to infection are termed 
Vaccine Effects on Susceptibility (VES). VES and VEI can 
be considered as proportional reductions in the susceptibility 
or infectiousness, respectively, of vaccinated individuals due 
to the effects of the vaccine. Typically, VES is formulated as 
1-RR, where RR is the relative risk of becoming infected in 
vaccinated individuals as compared to unvaccinated 
individuals. For the VEI, the vaccine effect measure would 
take the form of a ratio of two conditional secondary attack 
rates (SARs) (i.e., SARV/SARP), where SARV would 
indicate the fraction of individuals who were infected by 
exposure to an infected vaccinated individual, and SARP 
would indicate the fraction of individuals who were infected 
by exposure to an infected unvaccinated individual.   

Vaccine Effects on Infectiousness have important 
public health implications for the ability of a vaccine to 
disrupt epidemic transmission dynamics, particularly if 
VES effects are not substantial. Vaccines which only 
modestly reduce susceptibility to HIV infection, but which 
also reduce the infectiousness of vaccinated individuals, 
could potentially halt epidemic HIV transmission primarily 
by preventing infected individuals from transmitting HIV 
to others (Adams et al. 1998). 
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The combined effects of VES and VEI on the epidemic 
potential of a disease can be summarized under a set of 
hypothetical conditions by another vaccine efficacy measure 
called VER, the Vaccine Effect on the basic Reproduction 
number (Adams et al. 1998). The Basic Reproduction 
Number (R0) can be understood as the average number of 
secondary infections produced when one infected individual 
is introduced into a population where everyone is susceptible 
(Anderson and May 1991). When R0 is greater than one, 
epidemic disease transmission results; when R0 is less than 
one, disease transmission cannot be sustained and eventually 
the disease will become eradicated. VER can be defined as: 

 
VER = 1-((1-VES) (1-VEI)), (1) 

 
and can be interpreted as the proportional reduction in the 
basic reproduction number caused by vaccination under a 
set of hypothetical conditions which would hold in a 
simple mathematical model of epidemic disease transmis-
sion (Barth-Jones 1999).  Although these hypothetical 
conditions are unlikely to exactly hold for HIV (or other 
infectious diseases), this definition of VER provides a 
convenient framework for expressing the potential com-
bined effects of VES and VEI on the transmission of an 
infectious agent within a population. 

The Retrospective Partner Trials (RPT) HIV vaccine 
trial design was developed to allow the measurement of 
VES, VEI, and VER. Standard vaccine trial designs only 
measure VES, and, thus, run the risk of rejecting these 
potentially effective HIV vaccines. The RPT vaccine trial 
design obtains information on VEI by employing contact 
tracing (also known as partner notification) to follow the 
sex partners of those vaccine trial participants who become 
infected during the vaccine trial (Adams et al. 1998, Barth-
Jones 1999). Recent work by Barth-Jones and colleagues 
describes the RPT vaccine trial design; presents methods 
for estimating VES, VEI and VER within the design; and 
explores the implications of a probability model for the 
statistical power of the RPT design (Adams et al. 1998, 
Barth-Jones 1999). Like most simple methods for estima-
ting vaccine effects, all of these methods are based on the 
normal approximation to the binomial distribution (O�Neill 
1988, Blackwelder 1993). 

An aspect of the RPT design that requires investiga-
tion involves the manner in which the RPT design calcu-
lates the SARs used to estimate VEI and, thus, VER. Perfect 
calculation of the SARs would involve exact knowledge of 
the time of HIV infection for each of the vaccine study 
participants. The RPT trial design, however, must approxi-
mate these times of infection using information on the 
timing of the sexual partnerships of infected study partici-
pants and phylogenetic information from HIV collected 
from the infected study participants and their sex partners. 
Using simulation data, it is possible to compare the effects 
of the imperfect RPT SAR calculation methods with the 
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true VEI and VER results, which can be collected in the 
computer simulation but which would be unascertainable 
in an actual vaccine trial. 

The Monte Carlo experiment presented here has three 
main goals. The first is to investigate the bias, precision 
and statistical power of the vaccine effect estimators for 
VES, VEI and VER. The second is to compare the VEI and 
VER estimators produced by the RPT design with the VEI 
and VER estimators produced using perfect information 
from the simulation. The final goal is to demonstrate that 
infectious disease transmission dynamics violate the 
independence assumptions inherent in the use of the 
binomial distribution for modeling infection risks.  

Section 2 of this report briefly describes the study 
design for an RPT HIV vaccine trial. Section 3 provides a 
summary of the HIVSIM computer simulation used to 
generate the simulated vaccine trial data. The design of the 
Monte Carlo simulation experiment is presented in Section 
4. Section 5 provides the results from the Monte Carlo 
experiment. Finally, Section 6 discusses the implications of 
these results for the RPT trial design and the important role 
simulation methods have had in the development of this 
HIV vaccine trial design. 

 
2 RETROSPECTIVE PARTNER  

TRIALS STUDY DESIGN 
 
The RPT design employs retrospective contact tracing to 
obtain information regarding the sex partners of those trial 
subjects who became infected during the vaccine trial. This 
information is used in the calculation of the VEI estimates. 
Two types of information obtainable during the contact 
tracing process are used to calculate the SARs used to 
estimate VEI: 1) phylogenetic analysis of blood samples 
from the trial subjects and their sex partners (Leitner et al. 
1996), and 2) the timing of the sexual partnerships. See 
Adams et al. (1998) and Barth-Jones (1999) for a more 
thorough discussion. 

The RPT trial would be conducted as a double-blind, 
placebo controlled randomized vaccine trial. A total 
sample size of Ntot HIV negative vaccine trial participants 
would be enrolled into the vaccine trial. A fraction fv of the 
vaccine trial participants would be randomized to the 
vaccine arm of the trial (Nv) and the fraction 1- fv would be 
randomized to the placebo arm of the trial (Np). After 
receiving either vaccine or a placebo, participants would 
then be followed with periodic testing for HIV infection. 
Those trial participants who are found to be infected would 
be considered index cases. Vaccinated index cases (Iv) and 
placebo-treated index cases (Ip) would be interviewed to 
provide information for the contact-tracing process. Sex 
partners identified via the contact-tracing process would be 
notified of potential exposure to an HIV infected partner 
and offered HIV testing. Those partners to whom transmis-
sion could potentially have occurred would be determined 
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on the basis of phylogenetic analysis and historical timing 
data. Such partnerships constitute �trial� partnerships.  The 
total number of these trial partnerships for the vaccinated 
(Tv) and placebo-treated (Tp) index cases serve as the 
denominators in the SARs for the calculation of VEI. All 
partnerships with related HIV which began subsequent to 
the end of the first partnership found to have HIV related to 
that of the index case would be considered transmission 
partnerships. The total number of transmission cases for 
the vaccinated (Xv) and placebo-treated (Xp) index cases 
would serve as the numerators in the SARs for VEI. 

 
3 COMPUTER SIMULATION METHODS 
 
As previously mentioned, HIVSIM, a discrete event com-
puter simulation (DES), was employed for the evaluation 
of the RPT study design because it can generate simulated 
vaccine trial data which are produced by a complex, dyna-
mic HIV transmission model.  HIVSIM was constructed as 
a Monte Carlo DES in a continuous time framework with 
randomly determined times to future events.  This simula-
tion environment is capable of generating many real world 
complexities of HIV transmission dynamics and HIV 
vaccine trials. Real world sexual contact patterns can 
include partnerships of variable lengths that might be made 
preferentially between different types of individuals 
depending on the partnership status of those individuals. 
Additional characteristics of real world contact patterns 
and HIV transmission include: 1) concurrent as well as 
monogamous partnerships; 2) partnerships with differing 
rates of sexual activity; 3) individuals with different 
partnership-seeking propensities; and 4) HIV transmission 
probabilities which are dependent on sex-act type, sex-act 
role and stage of HIV infection. All of these behaviors/ 
conditions can be manipulated by modifying the HIVSIM 
simulation parameters. These simulation parameters deter-
mine the expectations for the stochastic variation that 
occurs in each individual within each simulation run. Only 
a brief overview of the HIVSIM vaccine trial simulation 
process is provided here. The HIVSIM computer simula-
tion model design, function and implementation details is 
described in Adams et al. 1998. 

Prior to beginning a vaccine trial experiment, HIVSIM 
runs through a partnership stabilization period in order to 
allow a stable partnership contact pattern to develop. Once 
this equilibration has occurred, all simulation repetitions for 
an experiment are started from the same initial partnership 
formation state. At the start of each simulation repetition, a 
number of individuals are randomly selected from the 
population and infected with HIV. Immediately thereafter, a 
simulated vaccine trial is initiated by: 1) the random 
selection of vaccine trial participants within the population, 
and 2) their randomization to the vaccine or placebo arms of 
the vaccine trial. The sexual mixing and the HIV 
transmission processes continue throughout the simulated 
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vaccine trial period. HIV transmission probabilities within 
the simulation are specified according to type of sex-acts, 
sexual roles, and the stage of HIV infection for the infected 
partner. In vaccinated individuals, these transmission 
probabilities are modified according to the VES and VEI 
parameters specified for the simulation. For example, if an 
uninfected partner has been vaccinated, the transmission 
probability from the infected participant to the uninfected 
partner is multiplied by a proportional factor of 1-VES. 
Likewise, if the infected partner has become infected despite 
vaccination, the transmission probability from the infected 
participant to an uninfected partner is multiplied by a 
proportional factor of 1-VEI. Finally, if both partners have 
been vaccinated, then the transmission probability between 
the infected and the uninfected partner is multiplied by a 
proportional factor equal to the product of 1-VEI and 1-VES.  

Complete information is recorded on all sexual 
partnerships and HIV transmission events during the 
simulated vaccine trial. At the end of the specified vaccine 
trial period, the vaccine efficacy measurements (VES, VEI 
and VER) from the trial are calculated. This allows the 
calculation of two separate types of estimates for VEI from 
the simulated population. �RPT-based� vaccine efficacy 
measurements utilize the same information that would be 
available in an actual RPT vaccine trial. These measure-
ments rely on classification rules to establish which sexual 
partnerships of an index case can be considered as part of 
the numerator or the denominator in the SARs used to 
calculate VEI (Adams et al. 1998). �Simulation-based� 
estimates utilize perfect information that is available only 
in the simulated environment.  In the computer-simulated 
environment, the exact time of HIV infection is known for 
every individual in the vaccine trial population. This allows 
simulation-based VEI estimates to perfectly determine 
whether each sexual partnership of an index case in the 
vaccine trial should constitute a �trial� partnership that was 
at risk for HIV transmission from the index case. RPT-
based VEI estimates, however, must rely on the same 
information which would be obtainable in an actual RPT 
vaccine trial and, therefore, will be subject to some 
imperfection in ascertaining which sexual partnerships of 
an index case actually constitute trial partnerships. 
Therefore, it is of interest to compare the precision and bias 
of RPT-based and simulation-based VEI estimates 
produced by the HIVSIM simulation of the RPT vaccine 
trial. Because VER estimates result from combined VES 
and VEI estimates, VER estimates can also be designated as 
RPT-based or simulation-based estimates depending on the 
type of VEI estimates from which they were derived.  

 
4 MONTE CARLO EXPERIMENT  

DESIGN AND METHODS 
 
A Monte Carlo simulation experiment was performed 
using HIVSIM to simulate repeated RPT vaccine trials 
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with identical conditions. Each simulation repetition 
provides one estimate for each of the observed statistics 
drawn from their respective sampling distributions.  

Three different vaccine effect settings were selected for 
this experiment. The VES and VEI parameters and the 
number of simulated vaccine trials conducted for each 
setting were as follows: 1) VES=0.0, VEI=0.0, R=1,000 
simulated vaccine trials; 2) VES=0.25, VEI=0.75, R=500; 3) 
VES=0.5, VEI=0.9, R=500. All other model parameters for 
HIVSIM were identical across the three vaccine effect 
settings and across the vaccine trial repetitions. One 
thousand repetitions were conducted for the VES=0.0, 
VEI=0.0 setting in order to assure well-defined null distribu-
tion tails for empirical statistical power calculations. 

All of the simulations were conducted with identical 
starting conditions for the partnership network in the sexual 
mixing population as described in the Computer Simulation 
Methods section. Each simulated multi-site vaccine trial 
took place within 4 closed homosexual mixing populations 
of 4,400 individuals. The RPT vaccine trials were each 
conducted over a simulated period of two years. Individuals 
could leave the population only through death by AIDS. The 
simulation parameters were set so that 25 percent of the 
sexual mixing population would participate in concurrent 
sexual partnerships with as many as two simultaneous sexual 
partnerships.  Prior to the initiation of the vaccine trial, 400 
individuals within each of the four study site populations 
were randomly selected for HIV infection. Of the remaining 
4,000 uninfected members in each of the four simulated 
populations, a total of 660 individuals were randomly 
selected for participation in each RPT vaccine trial. The total 
sample size for the multi-site RPT vaccine trial was thus 
N=2,640, with N=1,320 in both the vaccinated and the 
placebo treatment groups. This sample size is roughly 
comparable to the actual sample size of the Phase III HIV 
vaccine trials which are currently being conducted in 
Thailand with a sample size of N=2500 (Francis 1998, 
Balter 1998). The sample size within each study site 
population was selected so that only a small percentage 
(7.5%) of the mixing population would be vaccinated. This 
proportion was small enough that the epidemic transmission 
in the mixing population was not significantly altered due to 
herd immunity or indirect vaccine effects. Barth-Jones 
(1999) provides a complete list of the HIVSIM simulation 
parameters used in this experiment.  

Once all of the simulation repetitions are completed, 
the results of the simulation experiment can be 
summarized. The following notation will be used to 
summarize the results of the simulation experiment. Let Λ 
be a general symbol for any simulation parameter that was 
set to a specific value for a series of simulation repetitions. 
Let the total number of simulation repetitions be denoted as 
R, and the simulation repetitions be indexed by j. Then, for 
any general statistic, jΛ�  will denote the realization of a 
single estimate of the simulation parameter taken from the 
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jth simulation. The sample mean of the R, jΛ� Monte Carlo 

estimates for the simulation parameter Λ will be denoted as 
Λ . For a given set of R simulation repetitions, then, the 
Monte Carlo estimate of the bias of the statistic relative to 
the simulation parameter is given by: 

 

SABI � Λ−Λ=Λ]�[ . (2) 
 
The bias of a statistic indicates, on average, how much the 
estimator will over- or underestimate the actual parameter 
value (Mooney 1997). The Monte Carlo estimate of the 
Standard Error of the statistic is given by: 
 

ES � [Λ� ] = )1(/)�(
1

2 −Λ−Λ∑
=

R
toRj

j .  (3) 

 
The standard error indicates the precision with which a 
statistic is estimated (Mooney 1997). The Monte Carlo 
estimate of the Root Mean Square Error of the statistic is 
given by: 
 

ESRM � [Λ� ] = R
toRj

j∑
=

Λ−Λ
1

2 /)�( .  (4) 

 
The Root Mean Square Error of a statistic is a measure of 
its accuracy that takes into account both the bias and the 
standard error. The ratio of the RMSE over the standard 
error indicates the relative increase in the overall error that 
is caused by the bias. Typically, unless it is desired to have 
highly accurate confidence intervals for a statistic, if the 
bias contributes only a few percentage points of increase to 
the overall error relative to the standard error, then it is 
ignorable (Efron 1993). 

The precision of the Monte Carlo estimates made with 
Equations (2-4) will increase with an increasing number of 
simulation repetitions. However, because HIVSIM simula-
tion runs are very computationally intensive, the precision 
of the Monte Carlo estimates was further increased by the 
use of bootstrap methods (Efron 1993). The bootstrap 
estimates were made by drawing samples of size R with 
replacement from the original R Monte Carlo simulation 
experiments. A total of 2,000 bootstrap samples were 
drawn to produce the bootstrapped estimates of the Monte 
Carlo results. The bootstrapped estimates of the bias, MSE 
and SE are the average values for Equations (2-4), respec-
tively, applied to the 2,000 bootstrap samples of the 
original Monte Carlo results. Although the bootstrapped 
estimates are reported here, these estimates differed from 
the original Monte Carlo estimates only in the fourth and, 
rarely, the third digits, indicating that the precision of the 
original Monte Carlo estimates was quite high. The Monte 
Carlo estimates for the equitailed 1-α percent confidence 
intervals were obtained by determining the bootstrap esti-
19
 
mates for the α/2 and 1-α/2 percentiles of the distribution 
of the R Monte Carlo estimates, Λj (Mooney 1997). 

The empirical statistical power was estimated as 
follows. First, the bootstrap estimate for the 95th percentile 
of the null distribution (i.e., simulation parameters: 
VES=0.0 and VEI=0.0) was determined. Then the empirical 
statistical power for a one-tailed, α=0.05 test was calculat-
ed as the proportion of the R simulation repetitions in the 
effect distributions (i.e., simulation parameters VES > 0.0 
and VEI > 0.0), where the Monte Carlo estimates exceeded 
the null distribution�s bootstrap 95th percentile point. 
(Mooney 1997). Statistical power was also determined for 
the large sample Wald tests and the permutation tests for 
VES, VEI and VER (Blackwelder 1993, Barth-Jones 1999, 
Good 1994). The statistical power estimates constituted the 
proportion of the R simulation repetitions for the effect 
distributions which had Wald (or permutation) tests which 
were statistically significant at the one-tailed, α=0.05 level.  

 
5 RESULTS 
 
5.1 Sampling Distribution Characteristics 
 
Table 1 provides a summary of simulation experiment 
results for the sampling distribution characteristics of the 
vaccine efficacy parameters VES, VEI and VER. The sam-
pling bias and precision for these estimators are summa-
rized by the bootstrap estimates for the Bias (Equation 2), 
the Standard Error (SE) (Equation 3) and the Root Mean 
Square Error (RMSE) (Equation 4). The values presented 
in Table 1 are bootstrap estimates of the Monte Carlo 
sampling distribution estimates as described in the Monte 
Carlo Experimental Design and Methods section. Each of 
the VE measurements: VES, VEI RPT, VEI SIM, VER RPT and 
VER SIM, are arranged in blocks of rows for the purpose of 
comparison.  Two types of comparisons are of primary 
interest for the results presented in this table. First, the 
changes in the bias and precision for each VE statistic can 
be observed as the VES and VEI parameters were altered in 
the simulation experiment. Second, for VEI, the changes in 
bias and precision resulting from the imperfect estimation 
of the time of infection for the index cases can be assessed 
by comparing the VEI RPT and VEI SIM results. Likewise, 
comparing VER RPT with VER SIM results can assess the 
impact of this imperfect VEI estimation on VER. 

All of these statistics demonstrate a negative bias, 
indicating that on average they will underestimate the 
actual vaccine efficacy statistics. For VES, the bias 
increases from -0.02, when VES = 0.0, to approximately �
0.06, when VES = 0.5. For the other four statistics, VEI RPT, 
VEI SIM, VER RPT and VER SIM, the bias is greatest when the 
vaccine efficacy parameters are 0.0, but decreases con-
siderably with the increase in the VE statistics. It is also 
interesting to note that the bias is slightly larger for the 
simulation measures VEI SIM and VER SIM than it is for the 
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Table 1:   Monte-Carlo Simulation Experiment Results for Sampling Distribution Characteristics

(1)               
Simulation 

Parameter Settings

(2) 
Simulation 
Repetitions 

(R = )

(3)           
VE Parameter 

Under 
Consideration

(4)     
Mean

(5)   
Bias

(6)  
SE

(7) 
RMSE

(8)      
Ratio 

RMSE/ 
SE

(9)         
Low 90% CI  
(5% below 

value)

(10)        
High 90% CI 

(5% above 
value)

VES

VES=0, VEI=0 1,000 0 -0.002 -0.002 0.149 0.149 1.000 -0.267 0.225
VES=0.25, VEI=0.75 500 0.25 0.217 -0.033 0.136 0.140 1.029 -0.019 0.416
VES=0.5, VEI=0.9 500 0.5 0.443 -0.057 0.104 0.120 1.143 0.260 0.600

VEI RPT

VES=0, VEI=0 1,000 0 -0.057 -0.057 0.304 0.310 1.017 -0.612 0.354
VES=0.25, VEI=0.75 500 0.75 0.7163 -0.034 0.140 0.144 1.029 0.464 0.896
VES=0.5, VEI=0.9 500 0.9 0.8847 -0.015 0.101 0.102 1.012 0.700 1.000

VEI SIM

VES=0, VEI=0 1,000 0 -0.045 -0.045 0.258 0.262 1.015 -0.512 0.317
VES=0.25, VEI=0.75 500 0.75 0.6985 -0.052 0.124 0.135 1.083 0.475 0.866
VES=0.5, VEI=0.9 500 0.9 0.8726 -0.027 0.091 0.095 1.044 0.706 1.000

VER RPT

VES=0, VEI=0 1,000 0 -0.060 -0.060 0.351 0.356 1.014 -0.710 0.401
VES=0.25, VEI=0.75 500 0.8125 0.778 -0.034 0.114 0.119 1.044 0.565 0.924
VES=0.5, VEI=0.9 500 0.95 0.936 -0.014 0.057 0.059 1.030 0.831 1.000

VER SIM

VES=0, VEI=0 1,000 0 -0.048 -0.048 0.309 0.312 1.012 -0.617 0.370
VES=0.25, VEI=0.75 500 0.8125 0.764 -0.048 0.104 0.114 1.103 0.570 0.902
VES=0.5, VEI=0.9 500 0.95 0.929 -0.021 0.052 0.056 1.078 0.834 1.000  
 
equivalent RPT-based measures. However, when the VEI 
and VER parameters are high, the observed biases for both 
types of estimators become smaller and the differences in 
the degree of bias between the RPT-based and simulation-
based VE statistics decreases. For example, for the para-
meters VES=0.5 and VEI=0.9, the respective biases for VEI 

RPT and VEI SIM are only -0.015 and -0.027.  
The standard errors of the vaccine efficacy statistics 

are acceptably small for all of the estimators at the non-null 
experimental parameter settings.  The standard errors for 
all of the VE statistics decrease with the increasing vaccine 
effects. As would be expected, the standard errors for the 
RPT estimates are consistently higher than the simulation 
estimates. These same patterns are also seen in the 90 per-
cent confidence intervals presented in Columns 9 and 10. 

The Root Mean Square Errors demonstrate a similar 
trend for all of the VE statistics as was observed for the 
standard errors. The RMSE indicates how both the bias and 
the standard error affect the accuracy of the VE statistics. 
The RMSE for all of the VE statistics decreases with the 
increasing vaccine effects. As was found for the standard 
errors, the RMSEs for the RPT-based estimates for VEI 
and VER are consistently slightly higher than the simula-
tion-based estimates. Because the exact time of HIV infec-
tion is imperfectly approximated by the RPT-based esti-
mates, these estimates have slightly decreased precision 
relative to the simulation-based estimates. This conclusion 
19
is supported by the modest values found in Column 8 for 
the ratios of the RMSEs over the standard errors. The 
largest ratio, 1.14, occurs for the VES statistic when the 
VES parameter is 0.5. Because the RMSE is only about 14 
percent greater than the standard error alone, it can be 
concluded that bias has a small, but not ignorable, 
influence on the overall accuracy of these statistics. The 
observed bias in these estimates can be mostly accounted 
for by issues related to well-known problem of bias of in 
ratio estimators.  Chick et al. (In Press) investigate this 
issue for vaccine effect estimators and present bias correc-
tions for VES, VEI and VER. These simulation data were 
also reanalyzed using a more appropriate estimator for 
vaccines that only provide partial protection against infec-
tion or transmission (Haber et al. 1991), and the bias cor-
rection of Jewell (1986) or its VEI and VER analogs (Chick 
et al. In Press).  With these improved estimators, the bias 
was found to be reduced to almost one-half of the levels 
reported here.  Additionally, the precision of these estima-
tors was also improved in most cases (data not shown).  

 
5.2 Statistical Power Comparisons  
 
Table 2 provides the results comparing the empirical 
statistical power with the power of the Wald and permuta-
tion hypothesis testing methods. All of the statistical power 
calculations are reported for a one-tailed test with α=0.05. 
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The most important result from this investigation of 
the statistical power is the fact that the simulations demon-
strated substantial statistical power for the RPT design to 
detect VEI and VER effects under large sample conditions. 
For example, both the Wald and permutation tests demon-
strated statistical power above 90 percent for VEI RPT, when 
VES=0.25 and VEI=0.75 (i.e., VER = 0.8125). The statisti-
cal power for VER RPT under the same conditions was also 
over 90 percent for both the Wald and the permutation 
tests. Note that a vaccine with a VER greater than 80 per-
cent, would be theoretically capable of reducing an R0 of 
5.0 � the upper estimate for the R0 of the AIDS epidemic in 
San Francisco (Blower and McLean 1994) - to below one, 
thus halting epidemic HIV transmission. By comparison, a 
standard vaccine trial design, which is only capable of 
detecting VES effects, would have had only a 49.2 percent 
probability of detecting the VES effect using the Wald test. 
Therefore, a standard vaccine trial would have had a 50 
percent chance of rejecting an HIV vaccine with the theo-
retical potential to halt the San Francisco AIDS epidemic. 

It should also be noted that in some cases the power 
for the Wald and Permutation tests under the null distribu-
tion exceeds the nominal alpha level for the tests. This 
means that the Wald and Permutation tests will make more 
type I errors than were specified as acceptable. Theoreti-
cally, the permutation test results should be conservative, 
with the observed alpha levels always falling at or below 
the nominal alpha level, if the independence and randomi-
zation assumptions of the test have been met (Good 1994). 
The failure of the permutation tests to yield conservative or 
exact alpha errors is thought by the authors to be caused by 
the lack of independence of outcomes for the participants 
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in the vaccine trials. While the permutation test dispenses 
with the assumption of the binomial distribution, the viola-
tion of the independence assumption still appears to be an 
important issue for the use of the permutation test in this 
context. The significance of the violation of the 
independence assumptions is discussed in more detail in 
the following section the on correlation of infection risks. 
 
5.3 Correlation of Infection Risks and  

Independence of Observations 
 
Figure 1 provides a scatterplot of the infection risks in the 
vaccinated and placebo treatment groups for each of the 
4000 simulated study sites that were used to form the 1,000 
multi-site vaccine trials where VES=0 and VEI=0. 
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Figure 1:  Correlation in Infection Risks 
(1)                           
Simulation Parameter Settings

(2)  
Empirical 
Statistical 

Power   
(%)

(3)         
Statistical 
Power for 

Wald 
Hypothesis 
Tests (%)

(4)           
Statistical 
Power for 

Permutation 
Hypothesis 
Tests  (%)

(5)  
Empirical 
Statistical 

Power   
(%)

(6)         
Statistical 
Power for 

Wald 
Hypothesis 
Tests (%)

(7)           
Statistical Power 
for Permutation 

Hypothesis Tests 
(%)

Statistical Power for VES

VES=0, VEI=0, (VER=0) 5.0 4.9 8.5
VES=0.25, VEI=0.75, (VER=0.8125) 42.2 49.2 43.6
VES=0.5, VEI=0.9, (VER=0.95) 91.2 93.6 89.5

Statistical Power for VEI RPT Statistical Power for VEI SIM

VES=0, VEI=0, (VER=0) 5.0 8.6 7.5 5.0 8.2 8.6
VES=0.25, VEI=0.75, (VER=0.8125) 93.6 94.0 91.0 95.6 96.6 93.0
VES=0.5, VEI=0.9, (VER=0.95) 98.4 79.7 96.8 99.2 92.0 98.4

Statistical Power for VER RPT Statistical Power for VER SIM

VES=0, VEI=0, (VER=0) 5.0 3.1 7.4 5.0 2.6 8.8
VES=0.25, VEI=0.75, (VER=0.8125) 95.6 93.2 94.4 97.2 96.6 95.8
VES=0.5, VEI=0.9, (VER=0.95) 100.0 80.9 99.8 100.0 92.4 100.0

Table 2:  Summary of Statistical Power Comparisons
1



Barth-Jones, Adams, and Koopman 
As can be seen from the regression line on the graph, a 
modest correlation exists between the infection risks in the 
vaccinated treatment group and the placebo treatment 
group.  The correlation coefficient for these risks was 0.32. 
Moderate, but highly significant, correlations in the 
infection risks were also were seen for the other parameter 
settings used in this experiment.  Epidemic transmission 
was the cause of the correlation between these risks. 
Although each study site simulation was conducted with 
identical starting conditions, stochastic variations in the 
evolving HIV epidemics caused the infection risks to vary 
in each simulation. This is the case because the infection 
risk for each individual in an epidemic population is 
dependent on the probability that they will make contact 
with an infected individual. As each epidemic moves 
through the simulated populations, the prevalence of HIV 
in the populations increases, as does the probability that the 
population members will subsequently make contact with 
an infectious sexual partner. This causes the infection risks 
of the population members to be interdependent, thus 
violating the independence assumption inherent in the use 
of the Binomial probability distribution (Collet 1994). 

Within a single real-world vaccine trial or observa-
tional study of infectious disease risks, the correlation of 
binary responses cannot be easily demonstrated or 
observed. However, within a simulation environment, 
where epidemics can be observed many times under 
identical operating conditions, the correlation of the binary 
responses is readily observed, as it is in Figure 1.  

 
6 DISCUSSION 
 
This investigation used a computer simulation model of 
HIV transmission within a homosexual mixing population 
to generate simulated data from an RPT HIV vaccine trial. 
The computer simulation data was used to: 1) examine the 
sampling distribution characteristics and statistical power 
for the VES, VEI and VER estimates; 2) demonstrate that 
the imperfect RPT methods for measuring VEI effects do 
not significantly reduce the accuracy of the VEI and VER 
estimates made by the RPT trials; and 3) illustrate the 
dependence of infection risks between individuals caused 
by epidemic HIV transmission dynamics. 

The results of this investigation are encouraging. This 
experiment indicates that for an RPT HIV vaccine trial 
with a sample size in the thousands, VES, VEI and VER 
estimates could be made with considerable accuracy and 
substantial statistical power. In simulated RPT vaccine 
trials with a sample size of N=2640, it was observed that 
the overall accuracy of the VES, VEI and VER estimates 
was quite good. While some slight bias was evident in the 
estimates, the standard errors and confidence intervals 
were quite acceptable. Furthermore, the statistical power of 
the RPT design to detect VER was excellent. Consider the 
simulation results for a vaccine that reduced a recipient�s 
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susceptibility by only 25 percent (i.e., VES=0.25), but 
which also reduced the recipient�s infectiousness to others 
by 75 percent if the recipient became infected (i.e., 
VEI=0.75). The simulation experiment demonstrated a 
greater than 90 percent chance that such a vaccine with 
VER of 0.8125 would be considered efficacious by an RPT 
trial. In contrast, a standard vaccine trial design would have 
had a 50 percent chance of rejecting such a highly effective 
vaccine due to its low VES value of 0.25.  

The simulation parameters selected for this study 
produced HIV epidemics which were consistent with the 
conditions which might exist for an HIV vaccine field trial 
(Barth-Jones 1999). The simulation parameters used in this 
experiment yielded a modest baseline HIV incidence 
(about 3 percent annually), a relatively low per-partnership 
transmission probability (0.092), and a plausible number of 
trial partners (6.15) in a two year period. Furthermore, the 
sample size considered here was slightly more than half the 
sample size of the current Phase III HIV vaccine trials in 
the United States and the simulated vaccine trials lasted 
one year less than the U.S. trials are planned to run 
(Francis 1998, Balter 1998). Under these conservative 
conditions, excellent statistical power was observed for this 
experiment, but it should also be noted that this simulation 
study did not account for the high proportion of missing 
data that should be anticipated when attempting to contact-
trace the sex partners of the infected index cases. However, 
previous work using a probability model for the statistical 
power of RPT trials indicates that sufficient statistical 
power can be obtained, even with substantial missing 
partner data, if the partner data is randomly missing (Barth-
Jones 1999). Further work is needed, though, to investigate 
the impact of non-random missing partner data on the VE 
estimates produced by the RPT design. 

It was also possible to demonstrate that the infectious 
disease transmission dynamics produced by the HIVSIM 
computer model resulted in interdependent outcomes 
among study participants and thus violated the iid assump-
tions inherent in the use of the Binomial distribution to 
model infection risks. The correlation of the risks in the 
vaccinated and placebo treatment arms of the simulated 
study sites was produced by this interdependence of risks. 
This interdependence and the associated correlation has 
been investigated previously through the use of mathemati-
cal models, thus allowing proofs regarding the positive 
nature of this correlation and bounds for the degree of 
correlation to be established (Donnelly 1993, Helander et 
al. 1994), but the demonstration of interdependence and 
correlation using simulation is accessible to a broad 
audience without recourse to complicated mathematics. 
Because the correlation of risks in ratio estimates and the 
associated extra-binomial variation will affect the bias of a 
ratio estimator (Rice 1995, Collet 1994), the resulting 
effects of such interdependence on statistical estimates can 
be complex. Clearly, this is an important area for future 
92



Barth-Jones, Adams, and Koopman 
work by epidemiologists, biostatisticians and simula-
tionists. As was seen in this investigation, Monte Carlo 
simulations involving the explicit simulation of epidemic 
transmission dynamics are likely to be an important tool in 
developing a better understanding of this problem and 
potential analytic solutions (Boily et al. 1996, Chick et al. 
1999, Barth-Jones 1999, Desai 1999, Becker 1989). 

In conclusion, the results of this Monte Carlo experi-
ment suggest that, using an RPT HIV vaccine trial design, 
VES, VEI and VER estimates can be made with consider-
able accuracy and substantial statistical power when suffi-
ciently large sample sizes are employed. Given the impor-
tant role that infectiousness effects might have in halting 
epidemic HIV transmission, the RPT design warrants 
further consideration and development as a possible means 
by which such infectiousness effects might be measured. 
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