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ABSTRACT

We propose “low cost response surface methods” (LCRSM)
that typically require half the experimental runs of standard
response surface methods based on central composite and
Box Behnken designs but yield comparable or lower
modeling errors under realistic assumptions. In addition, the
LCRSM methods have substantially lower modeling errors
and greater expected savings compared with alternatives
with comparable numbers of runs, including small compo-
site designs and computer-generated designs based on popu-
lar criteria such as D-optimality. Therefore, when simula-
tion runs are expensive, low cost response surface methods
can be used to create regression meta-models for queuing or
other system optimization. The LCRSM procedures are also
apparently the first experimental design methods derived as
the solution to a simulation optimization problem. For these
reasons, we say that LCRSM are “for and from” simulation
optimization. We compare the proposed LCRSM methods
with a large number of alternatives based on six criteria. We
conclude that the proposed methods offer attractive
alternative to current methods in many relevant situations.

1 INTRODUCTION

Many engineers and scientists use design of experiments
techniques to construct empirical regression or “response
surface” models. An important application of response
surface models is meta-models for optimizing a simulated
system. When simulation runs are expensive, e.g., if a
system with a large number of queues is being modeled
with a high degree of realism, response surface methods
(RSM) permit the user to develop an inexpensive surrogate
or “meta-model” to facilitate the understanding and
optimization of the system being studied. Kelton (1999)
provides a recent tutorial on applications of RSM to
simulation meta-modeling.

Popular choices for experimental designs include Box
Behnken (1960), central composite, and small central
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composite designs, e.g., see Draper and Lin (1996). These
designs have several important justifications but are only
available for numbers of experimental runs that may, for
many relevant applications, be considered too large. In the
common situation in which the experimenter has only a
fixed budget, he or she must simply drop factors until the
corresponding number of runs meets the budget. Because
these procedures clearly can result in models of limited
scope and poor engineering results, there has been
considerable interest in alternative methods with fewer
runs for a given number of factors. For reviews of some of
this research, see Box and Draper (1987), and Draper and
Lin (1996 and 1990), and Myers and Montgomery (1995).

This paper proposes low cost response surface meth-
ods (LCRSM), which provide simple-to-use alternatives to
standard response surface methods with approximately half
the runs of Box Behnken and central composite designs
and substantially fewer runs than small composite designs
in most situations. The proposed methods derive from
design criteria based on assumptions, model selection
techniques, and diagnostic methods that have recently
become possible to implement because of improvements in
optimization methods and computing power. The main
justifications of the methods are that (1) the expected
accuracy of the empirical models derived using LCRSM is
comparable to the accuracy derived from more expensive
methods under realistic assumptions about the experi-
mental conditions, and (2) the methods are simple to use,
requiring no special software and limited training. The
importance of this second justification is established by the
widely cited fact, e.g., Myers and Montgomery (1995), that
simple, mechanical methods based on central composite
and Box Behnken (1960) designs are used much more than
any other response surface methods.

In the next section, we formally propose the LCRSM
methods and illustrate their application to an automotive
design problem. We present and illustrate the LCRSM
methods first in order to highlight their ease of application
before we discuss their derivation and justifications. Next,
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we review recent related progress in the areas of
experimental design criteria and optimization methods.
Then, we present justifications for the chosen candidate
model selection and regression diagnostics, and we
compare LCRSM methods with alternative methods based
on cost, final empirical model accuracy, and the remaining
Draper and Lin (1996) “value for money” criteria.
Finally, we summarize the contributions.

2 LOW COST RESPONSE SURFACE METHODS

The application of low cost response surface methods
(LCRSM) is very similar to that of ordinary response
surface methods except multiple models are fit instead of
one and the diagnostic test is different. The four major
steps in the application of any response surface methodolo-
gy are: 1) experimental setup and testing, 2) modeling, 3)
diagnosing whether the model is sufficiently accurate, and
4) additional testing, if needed. We use the application of
LCRSM to aid in decision-making aimed at increasing
profits and reducing customer lead-times of a fictitious
facility to illustrate the methods. Example applications of
LCRSM in engineering design contexts include Allen, Yu,
and Bernshteyn (2000) and Koc, Allen, Jiratheranat, and
Altan (2000). In the example we use in this paper, the goal
is to allocate engineering resources to reduce processing
times at various machine centers in a production facility.
Imagine that each simulation run requires greater than 1
hour of computer time and nontrivial preparation time and
that there is time pressure on the allocation decision.
Therefore, we only have enough time for 14 simulation
runs. We have four factors which correspond to possible
centers to invest in and the correspondence between
processing time distribution and expenditure is built into
the simulation. Since four factors are of interest to the
engineers, we choose to use LCRSM rather than to drop a
factor, as would be required using methods based on Box
Behnken (1960) or central composite designs.

2.1 The LCRSM Procedure
The precise procedure is defined as follows.

Step 1: (Setup and Experimentation) Choose the
experimental factors. Set up the experiment by taking the
experimental design from an appropriate table, either Table
1(a) or Table 2(a) for three and four factors respectively
and perform the specified tests. These experimental arrays
are derived in Section 3 by minimizing the expected
integrated means squared modeling error, proposed in
Allen and Yu (2000), as evaluated through a simplified
simulation of the multi-model, potentially sequential
analysis process described in Steps 2-4. In our example,
we use the design in Table 2(a). Table 3 also shows the
inputs in thousands of dollars along with the data from the
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14 distinct simulation runs for the two responses, which are
profits in thousands of dollars/shift and lead-time in hours.

Step 2: (Model Selection) Create the regression
model(s) of each response by fitting the appropriate set of
candidate model forms. For the 3 factor design in Table
1(a), this is the set in Table 1(b). Similarly, see Table 2 for
4 factors. Select the fit model form with the lowest sum of
squares error. Scaled (-1,1) units are used until the last
stage when the chosen model forms are fit in the
engineering units. The primary justification of these
choices of fit models, as described below, relates to the
pragmatic need to keep the number of candidate models
small in order to maintain reasonable computation times
for the practitioners during analysis and for us during
design generation. Also, while LCRSM procedures have
so far only been characterized formally for the specific sets
of models described in the tables, we have used linear
combinations of fit models for prediction following
engineering judgment in specific cases. In our example,
we fit the four model forms in Table 2(b) to each of the
responses and selected the one with the lowest sum of
squares error. The selected models are: y; ,,=72.0 + 9.0A
+14.1B + 13.4C + 11.8D + 8.52A% - 6.15B* + 0.86C7 +
3.95AB - 0.462AC - 0.744BC and y, .= 14.63 + 0.821A +
1.49B - 0.302C - 3.66D - 0.453A% - 1.666C” + 7.89D" -
2.221AC-0.307AD + 1.36CD.

Table 1: LCRSM with 3 Factors: (a) the Start-up Design in
Scaled (-1,1) Units, Referred to as &;, (b) the Model Forms,
and (c) the Optional Follow-up Runs, &,

(a)
Run A B C
1 1 -1 0
2 0 i -l 1
3 1 1 1
4 B S .|
5 -1 0 {05
6 0 0 0
7 005 1 0 -05
8 105105 -1
9 10505 ¢ -1
®) ©
Form #1: BotBaA+PgB+BcCH Run A B C
BA2A’+B2B%+BA5AB Al 1 0.5 1
A2 1 1 05
Form #2: BotBaA+BpB+pC+ A3 -0.5 1 1
BA2A*+Bc2C*+BAcAC
Form #3: BotBaA+BpB+pcC
BB2B*+Bc2C*+P5cBC
Step 3. (The Least Squares Coefficient Based
Diagnostic) Calculate
1/2
_(s9p2 ( 1) 2
ﬁq,e‘vt - (21 ﬁ[,ext) q 1) (1)

where f3; ., are the least squares estimates of the g second
order coefficients in the model chosen in Step 2. Include
coefficients of terms like A? and BC, but not first order
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terms such as A and D. Estimate the maximum acceptable
standard error of prediction or “plus or minus” accuracy
g0al, Opredicion- 1f Bgest < 1.00predicrion» Tefit the model form
in the engineering units. Stop. Otherwise, or if there is
any special concern with the accuracy, continue to Step 4.
Special concerns might include mid-experiment changes to
the experimental design. The primary justification for this
rule is that, by permitting the same degrees of freedom to
be used for both diagnosis and model fitting, the LSCB
diagnostic is able to achieve substantially lower expected
modeling errors than the standard regression diagnostics
which perform poorly in this context. Also, the fact that
By.ese Provides an approximate, conservative estimate of the
prediction errors is established below through examination
of the quartiles of the distribution of the integrated mean
squared error conditioned on 3, .. The default assumption
for Opedicion 15 that it equals 2.0 times the estimated
standard error, because then the achieved expected “plus or
minus” accuracy approximately equals the error that would
be expected if the experimenter applied substantially more
expensive methods based on composite designs. The
standard error can be estimated in practice using s/cy,
where s is the standard deviation of data from the repeated
runs and ¢4 is the bias correction (=0.80 when 2 repeated
points are used, e.g., Table 1, and 0.89 when 3 points are
used, e.g., Table 2).

Table 2: LCRSM with 4 Factors: (a) the Start-up Design in
Scaled (-1,1) Units, Referred to as &, (b) the Model Forms,
and (c) the Optional Follow-up Funs, &,

(@
B

A
-0.5 ¢ -1
1 1 -1
-1 1 1
1 -1
0 0 -1
0 1 0
-0.5 1 -1 1

-1 0
1 1 1 -1

1

0

OOO\]G\U!#UJN»—‘?
=

\
co P —r——~|lg

W

10 -1
11 0
0.5
0.5
0.5

(b)
BotBaA+PBB+BcCHpBpD+
BA2A+ 2B+ Bc2CH+
BapAB+BAcAC+PBpcBC
BotBaA+BB+BcC+pBpD+
Ba2A’+Bp2B*+Bp2D%+
BasAB+BApAD+BppBD
BotBaA+PeB+BcC+BpD+
Ba2A’+Bc2C*+Bp2D*+
BacAC+BapAD+BcpCD
BotBaA+PBeB+BcC+BpD+
Br2B*+Bc2C*+pp2D %+
BecBC+BrpBD+pcpCD

=
<

Form #1:

Form #2:

SRR PN
- =L —|w
_ = ala
LL—lo

Form #3:

Form #4:
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Table 3: Example — The Left shows the
Inputs which are Investments in $K to
Reduce Times at the Four Machine Centers
Labeled A-D, and the Right Shows the
Estimated Profits in Dollars and Lead
Times in Hours

Run A B C D Y1 Y2
1 125 1.7 125 10.00 55.95 15.39
2 200 21 10.0 10.00 101.76  19.92
3 1.00 2.1 20.0 10.00 101.23  21.02
4 200 17 125 6.25 52.93 18.55
5 150 1.9 100 7.50 59.93 13.42
6 150 21 150 7.50 80.54 15.90
7 125 17 200 6.25 60.87 14.70
8 1.00 19 150 7.50 72.02 13.51
9 200 21 20.0 5.00 102.70 22.81
10 | 1.00 2.1 10.0 5.00 51.36  23.79
11 150 1.9 150 5.00 59.42  26.33
12 | 175 18 175 875 81.94 13.50
13 | 175 18 175 875 81.94 13,50
14 1175 18 175 875 81.94 13.50

Another relevant assumption is that the standard
deviation of the random error is much smaller than the
accuracy needed, which holds for many types of computer
experiments. Then, the user needs to specify the desired
accuracy to avoid unnecessary experimental expense. In
our example, we select 0,,cqicrion Dased on financial needs to
equal $5.0K, or “+5K” accuracy, for the profit and
Oprediction=2-0 hrs. for the lead time. The square roots of the
{sum of squares of the 6 quadratic coefficients divided by
5} for the two responses are f3,.,~$5.0K and $3.8 hours
respectively. Since these are less than or equal to their
respective cutoffs, we stop. No more experiments are
believed necessary to achieve adequate meta-model
prediction errors.

Step 4: (Additional Runs, If Necessary) If needed,
perform additional experimental runs specified in part “(c)”
in the table appropriate for the number of factors used.
After the experiment, fit a full quadratic polynomial
regression model as in ordinary response surface methods
(RSM).  Then, the fit model is expected to have
comparable errors as if an expensive composite design had
been applied and a quadratic model fit.

3 THE DERIVATION OF LOW COST METHODS

In this section, we review and extend the results from the
studies of experimental design criteria and optimization
used in the method development from Allen and Yu
(1999a and b). In the next section, we describe new
methods for model discrimination and regression
diagnostics that make LCRSM possible.

3.1 Experimental Design Criterion
LCRSM use relatively few experimental test runs as

compared with alternatives. Therefore, it is imperative to
minimize the risk that the LCRSM procedure will derive
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inaccurate empirical models by capitalizing on the benefits
from optional sequential experimentation and model
selection. In this section, we begin by developing an
experimental design criterion or optimization objective that
can estimate the expected loss from model inaccuracy or
“risk” in the Bayesian sense, e.g., see Pilz (1991), taking
into account errors from important interactions and other
terms not included in the final fit model, the possibility of a
follow-up experimentation, and model selection.

Box and Draper (1959 and 1987) and others have
pointed out the limitations of many popular experimental
design criteria, such as D-optimality. These criteria ignore
the often-dominant bias errors from fitting a model form
that does not allow accurate approximation of the true
response. Therefore, we base our criterion on the Box and
Draper (1959) integrated mean squared error (IMSE)
criterion, which includes bias errors in the estimation of the
model errors. Allen and Yu (2000a) proposed the semi-
Bayesian extension of the IMSE called the expected
integrated mean squared error (EIMSE) to permit its
application in realistic situations when the true model is not
known. Allen and Yu (2000a) showed that, in the single fit
model non-sequential case, EIMSE optimal designs
performed nearly optimally for a variety of assumptions
and criteria, which was not true for other criteria such as
D-optimality and minimum bias. Further, they showed that
minimum bias and integrated variance optimal designs
could be generated using the EIMSE criteria.

The advantages of the EIMSE criterion include that
the square root of the EIMSE provides a direct and
comprehensive estimate of the plus or minus prediction
errors that experimenters can expect to achieve. Also, it is
one of few criteria that has been extended to apply to
sequential experimentation, see Allen and Yu (20005).
Moreover, because we will only have enough runs to fit
first and selected second order terms and we believe (see
below) that the true model can only be accurately
approximated by a third order polynomial, it is imperative
that we include both variance and bias errors which come
from model misspecification in our criterion. The EIMSE
criterion is the only usable criterion that we are aware of
which does this. Finally, Allen and Yu (2000a) showed
that, EIMSE optimal designs yielded good performance for
a variety of assumptions and other criteria such as D-
efficiency and minimum bias, which was not true for
alternative designs.

Next, we propose a straightforward extension to the
EIMSE as defined in Allen and Yu (20000) to estimate and
compare the plus or minus errors in cases in which
multiple models are fit and a mechanistic analysis pro-
cedure examines the data and selects the best model. We
write the expression below for the EIMSE independently
of our assumptions about the prior distributions for the
coefficients, B, and the random errors for the first and
second experiment (if needed), & and, &. In the next
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subsection, we will describe the distributions used to
generate LCRSM. Fortunately, as we will describe in later
sections, the LCRSM designs give good performance for a
variety of assumptions. We define the startup experimental
design matrix, &, and the followup design matrix, &,
which is optional. The function y; . is the fit model based
on the model form i =1,2,..,s, and yy;.s is the fit model
after augmentation which is assumed to be a full quadratic
functional form. The indicator function 7.,(B,&1,&1)
equals 1 if augmentation is not needed as decided after the
first experiment by the chosen model diagnostic, i.e., if
Byest < 20,4 , and 0 otherwise. Similarly, m(p,&1,&) equals
1 if model i is selected by the model selection method, i.e.,
in our case if SSE; < SSE; for all model pairs i#j, and 0
otherwise. Defining these “n” functions of random
variables is necessary in order to preserve the interpretation
of the EIMSE as the expected prediction errors. With these
definitions, the EIMSE objective is:

min EIMSE (&,.&,)=

7 sop (ﬁaelng)gn.(ﬂasngﬂk p(x)[y(x,ﬁ)—y,,m (x,ﬂ,g“gl)]zdx

Pl (B 8 ) PO B) v (5. B e £ P i) ()
where by default p(x)=1/V where V is the volume of the
region of interest and the expression generally requires
numerical simulation for its evaluation.

Defined in this way, the EIMSE has the intuitive
interpretation of being the expected IMSE of the final fit
model derived from the experimental process. Also, the
square root of the EIMSE may be defined as the “standard
error of prediction” or simply the “plus or minus prediction
error” which is of immediate relevance to the practitioner.
The trade-off for this interpretability and other advantages
is that the integration in (2) cannot be evaluated
analytically, complicating the minimization. Fortunately,
recently it has become feasible in relevant cases to perform
this minimization using the heuristics described in Section
3.3 and modern computer capabilities.

3.2 Assumptions about the True Model

We begin by making what we believe is an often realistic
assumption that a third order polynomial with N(0,0%)
experimental random errors, with unknown o, well
approximates the true model. If one feels that the true
model is highly nonlinear, i.e., fourth or higher order is
needed, then it is not clear whether any empirical modeling
methods with comparable numbers of runs to standard
response surface methods will provide an adequate fit
model. Also, while several authors have investigated the
effects of outliers on empirical modeling techniques, for a
review see Beckman and Cook (1983), at present we urge
the user to re-perform runs believed to be outliers. Note
that the assumption of a full cubic polynomial is
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substantially more realistic than the assumption of a
quadratic polynomial made in common implementations of
optimal experimental design, e.g., applications of D-
optimality, which are based on a single criterion and do not
include bias errors.

Next, we specify the necessary assumptions about the
coefficients of the cubic polynomial. @We make no
assumptions about the first order terms and only limited
assumptions about the second order terms. This follows
because these terms may or may not be very large
compared with the standard deviation of the random error,
o. It is not difficult to show analytically that if we make
the specific choices about candidate model terms described
in the next section then model selection probabilities and
virtually all properties of the fit model are independent of
the values of the first order coefficients. The main
assumption about the quadratic coefficients that we make
is conservative. This is that all the quadratic coefficients of
our terms, with the standard [1-,1] scaling of all factor, are
roughly of the same order of magnitude, i.e., N(O,[}qz).
Clearly, if some of the terms are exactly zero, this would
tend to favor methods like ours that omit some quadratic
terms. Then, we assume f3, is a U(0,L) hyper parameter to
allow for our uncertainty about the degree of curvature.
We admit that this scheme may seem somewhat arbitrary,
however, in our simulation investigations, we have found
that the choice of distributions have a small effect on the
relative performance of alternative methods. An important
achievement of LCRSM is, we believe, that the EIMSE is
highly insensitive to L (and ;). Thus, the methods are
robust to uncertainty about the quadratic curvature. Also,
the EIMSE values used in the comparison are based on
almost worst-case values of L and so, we believe, are
conservative.

In Allen and Yu (2000 a and b), we investigated
assumptions about the third order terms and concluded that
assuming that the third order coefficients are N(0,B,%) with
B. equal to 0.5 is in accordance with the implied
assumptions of the users of response surface methods. As
noted by Box and Draper (1987), “An investigator might
typically employ a fitted approximating function such as a
straight line, if he believed that the average departure from
the truth induced by the approximating function were no
worse than that induced by the process of fitting.”
Therefore, it is reasonable to believe that one will tend to
choose the degree of this approximating function in such a
way that the integrated variance error and the expected
integrated systematic error are about equal. It is easy to
check that 0.5 makes the expected bias errors
approximately equal to the integrated variance errors when
a full central composite design is applied. Fortunately, it is
easy to show that the relative effectiveness of alternative
methods is largely independent of the distribution of ..

708

3.3 The Method for Experimental
Design Generation

In this section, we review briefly how search techniques
that have traditionally been used for generating
experimental designs cannot be used to generate LCRSM
and how a new class of simulation optimization or
“stochastic” search techniques can; see Allen, Bernshteyn,
and Yu (1999) for more details. Each evaluation of the
EIMSE in (1) requires time-consuming numerical
simulation to calculate the expected values for all but
trivial choices of diagnostics and model selection
procedures, i.e., Ty(B.&,&) and m(B.&,&) functions.
Exchange algorithms, which are used in the majority of
commercial optimal experimental design algorithms,
obtain excellent efficiencies for linear optimality criteria
that do not require simulation evaluation, such as D-
optimality, by minimizing the number of time-consuming
function calls. To do this, they use recursive formulas and
large numbers of computationally inexpensive evaluations,
see, e.g., Meyer and Nachtsheim (1995). At present, no
recursive formulas exist to aid in the evaluation of the
EIMSE. Therefore, every evaluation is expensive and
exchange algorithms are extremely inefficient.

Optimization where the objective value must be
estimated using numerical integration is called “simulation
optimization” for surveys see, e.g., Plug (1996) and
Andradottir (1996). We used the optimization heuristic in
Allen, Bernshteyn, and Yu (2000) to produce the start up
and follow-up designs shown in Table 1, Table 2, and
Table 3 by minimizing the EIMSE in (3.1), using the
proposed hierachical prior, and the model selection and
diagnostics described in the next section. This
optimization method combines population based and
multiple comparison based search methods and uses
variation reduction techniques. In brief, a three stage
eliminating procedure is used to approximately sort the
population in each stage (generation) of the genetic
algorithm and to guarantee with an assignable probability
that the best solution is not lost.

4 MODEL SELECTION AND DIAGNOSTICS

The EIMSE objective, prior distributions, and stochastic
optimization methods can be used to generate and evaluate
experimental designs based on many types of model
selection and diagnostic procedures. In this section, we
motivate the choice of the procedures used in LCRSM
which, in the case of model selection, are hybrids and
extensions of approaches discussed in Srivastava (1996)
and Meyer, Steinberg, and Box (1995) adapted to the
response surface context. It would be ideal, perhaps, to
carry out the optimization of the EIMSE simultaneously
over the space of experimental designs, & and &, and over
the space of possible model selection and diagnostic
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decision rules. However, other considerations besides
model accuracy such as simplicity and analytical results
relating to robustness of the methods constrain the choices
and provide the motivation for the proposed hybrid
procedures. These procedures, which define the functions
Tsop(Br€1,€1) and 7i(B,€1,8,) used to evaluate the EIMSE in
(3.1), are largely responsible for the success of LCRSM by
permitting designs with few runs to achieve small values of
the EIMSE, ease of use, and other desirable properties.

4.1 The Model Selection Procedure

In this section, we motivate the proposed model selection
approach. We begin by briefly reviewing the proposed
method. Then, we discuss the criteria used to evaluate
methods, use these criteria to characterize the relevant
alternatives from the literature, and describe how the
proposed methods address the criteria. In the proposed
method models, all factors are present at first order in all
candidates, e.g., for m=3 all candidate models contain
BotBaA+LsB+BcC. The m models differ by the
combinations of m-1 of the m factors present at second
order, e.g., for m=3, one of the three models would also
contain ﬁAzA2 +BC2C2 +BacAC, missing factor B at
second order. See Tables 1-3b for other examples.

There has been considerable interest on the topic of
experimental design for model discrimination including
Atkinson and Fedorov (1975), Pukelsheim and Rosen-
berger (1993), and Meyer, Steinberg, and Box (1995) work
discussed in Srivastava (1996). Two of the most
influential types of candidate models include main effect
plus P (MEP+P) plans where P is an integer Srivastava
describes and what we term the “all combinations of active
factors” model sets proposed in Box and Meyer (1993) and
used in Myers, Steinberg, and Box (1995). Both types of
approaches have been proposed in the context of two level
experiments and require generalization to be applied for
response surface exploration.

MEP+P plans involve candidate models in which all
candidates include all first order terms and the candidates
differ by the combination of P terms from a chosen list of
R higher order terms, with all R choose P combinations
included. The central problem with MEP+P plans is that
the large number of candidate models makes modeling
difficult. For example, with m=4 factors, the number of
possible combinations of P=6 of the possible R=10 second
order terms is 210. While selecting the true model from
among 210 choices might, depending upon assumptions,
drive down the EIMSE compared with fitting the 4
candidate models in Table 2 (b), it is not, at present,
reasonable to request that the user routinely perform so
many regressions. Also, times for generating the arrays in
Tables 1-3 are roughly linear in the number of candidates.
Using a Pentium 450 MHz machine, computation time to
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generate the array in Table 3 involving 10 candidate
models required roughly 1 day. Because this optimization
must be run several times to ensure a thorough solution, we
feel that 10 candidates is, at least temporarily, a practical
limit. The “all combinations of active factors” method
uses all possible choices of active factors and includes in
each model all possible interactions between the “a” active
factors including interactions of order a. Benefits of this
type of approach include that it conforms to the plausible
assumptions of “factor sparsity” and “effect heredity”.
Box and Meyer (1986) defined “factor sparsity” as the
assumption that not all factors are “active.” This means
that some or all of the terms in the Taylor series expansion
associated with at least some of the factors are negligible.
Hamada and Wu (1992) defined “effect heredity” as the
assumption that certain 2™ order terms are only present
only if the related 1 order terms being non-zero. If these
assumptions hold, then the all combination of active factors
approach has a non-negligible probability of determining
the “true” model exactly. However, this approach results
in 2" candidate models of different orders, which is usually
too many for easy calculation. Also, depending upon the
number of active factors, some of the candidates may not
be estimable using ordinary least squares requiring
relatively difficult Bayesian modeling. Finally, in the “all
combinations” method all candidate models do not contain
all factors at first order. It is easy to confirm empirically
that this leads to high values of the EIMSE because of the
high probability that first order coefficients are large.

The proposed strategy has the following justifications.
First, all candidate sets contain ten or fewer models
facilitating calculation both for the practitioner and for
ourselves during design generation. Second, all candidates
contain all first order terms to make expected model errors
independent of first order term distribution. Third, the
strategy capitalizes on the benefits of both types of plans
and addresses both of our criteria. It is similar to the main
effect plus P (MEP+P) plans because all the candidate
models contain all first order terms. Another benefit that is
shared with the MEP+P plans is that all candidates include
greater than three terms so that the diagnostic described in
the next section can be applied. However, we only use m
candidate models, so our method is simpler to use. Finally,
like the all combinations of active factors plan, our
proposed strategy capitalizes on the possibility of factor
sparsity and effect heredity. It should be noted that our
candidate models do not even approximately minimize the
EIMSE under the assumption that the true model is a full
cubic with normally distributed coefficients in Section 3.2.
Since this assumption does not take into account factor
sparsity and heredity, which would tend to favor our
choices of models, we feel that the EIMSE based on our
earlier assumptions provides a conservative estimate of the
prediction errors.
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4.2 The Least Squares Coefficient
Based (LSCB) Diagnostic

In this section, we justify the proposed LSCB diagnostic by
comparing it with the standard regression F-test diagnostic
described in, e.g., Myers and Montgomery (1995). We
begin by describing the role of diagnostics in the low cost
response surface context. Then, we present empirical
evidence of the benefits of the LSCB diagnostic. Both
LCRSM and small composite designs involve estimating a
test statistic based on small numbers of start-up
experimental runs with the purpose of deciding whether
additional, follow-up experimental runs are needed after
the first set of experiments have been performed so that the
final model will have acceptable accuracy. For example,
when small composite designs are used, the experimenter
performs the start-up experiments on the cube and center
points and calculates the test statistic that is the mean
squared error divided by the variance of the repeated
points, o, Then, the practitioner performs an F-test using
this statistic usually with a=0.05 or 0.25 to decide whether
the so-called “star point” follow-up runs and a second
order model form are needed, e.g., see Myers and
Montgomery (1995). Similarly, in LCRSM, the
experimenter performs the first set of experiments, e.g.,
Table 1 (a), selects the appropriate model containing one
subset of the possible quadratic terms, and uses the LSCB
test statistic to decide whether or not to perform additional
pre-tabulated, follow-up runs, e.g., Table 1 (c). As defined
in equation (1), the LSCB test statistic is the square root of
(the sum of the squared quadratic coefficients divided by
the number of quadratic terms minus one), By e 1If By e 1S
less than two times the desired plus or minus error of
prediction,  Gpedicrions  StOP. Otherwise, perform the
additional, follow-up runs and fit a full quadratic. By
default, we assume that Gy cdicrions = 204, Where oy, is the
estimated standard error derived from the repeated points.
We show later that with this choice, LCRSM procedures
provide expected final model errors comparable to
alternatives based on small composite and Box Behknen
designs under the realistic assumptions described in
Section 3.2.

The primary justification for the LSCB diagnostic is
that it is able to achieve the objectives of the diagnostic
procedures while requiring two or more fewer start-up runs
than the standard F-test diagnostic. The diagnostics have
two objectives. First, the additional runs generally carry a
high cost, which is presumably the motivation for using the
low cost methods. Therefore, it is desirable to minimize
the probability that the follow-up runs will be used.
Second, in some cases the follow-up runs may be
necessary to minimize the expected modeling errors to
achieve acceptable accuracy. Empirical comparison of the
two diagnostics is not possible based on composite designs,
because the LSCB cannot be applied. @~ The LSCB
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diagnostic requires a model containing at least three
quadratic terms for the robustness reasons mentioned
above which is not possible based on a cube and center
point design. However, it is possible to compare the two
diagnostics based on LCRSM start-up and follow-up
designs and modeling strategies. Table 5 compares the
performance of the two methods. The extremely high
EIMSE values show that standard regression diagnostics
cannot be used in the context of LCRSM. The results also
illustrate the dangers of having fewer than three degrees of
freedom for the diagnostic. With the same experimental
designs and model selection strategy, the LSCB diagnostic
bases decisions on several more degrees of freedom than
the standard regression diagnostic. In all cases, the MSE
has only one degree of freedom while the B, .., used in
LSCB testing, has three or more.

Table 4: Compares F-Test Based and LCRSM Diagnostics
for L=8 and .=0.5 and the Designs in Tables 1-2(a)

No. F-Test with oo = 0.05 | F-Test with @ = 0.25 | LCRSM diagnostic
Factors | EIMSE P(stop) EIMSE P(stop) EIMSE P(stop)
3 10.0 0.89 5.1 0.57 12 0.15
4 13.1 0.84 8.0 0.59 1.4 0.17
5 25.6 0.84 15.7 0.59 2.3 0.15

5 COMPARISONS WITH ALTERNATIVES

In the next two sections, we compare LCRSM with
alternatives in order to establish that it provides an
attractive alternative to standard methods. Comparison of
alternative methods is an important topic in its own right.
Much in the next two sections is repeated from Allen and
Yu (2000b), which contains a more thorough comparison
of the alternatives. In this section, we compare a relatively
small number of alternatives based on what we consider to
be the two most important criteria: 1) the experimental cost
which primarily depends upon the number of runs, and 2)
the expected accuracy of the derived, final empirical
model. We restrict the scope of the comparison so that we
can examine a range of assumptions about the conditions.
Comparison of the modeling errors using popular
experimental design criteria such as G-efficiency and D-
efficiency, see, e.g., Myers and Montgomery (1995), which
rely on a pre-known functional form and experimental
design, is complicated by the fact that the LCRSM and the
methods based on composite designs are sequential.
Therefore, the final model form and associated experi-
mental design cannot be known before the experiments are
performed and these criteria would n