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ABSTRACT

This paper reviews statistical methods for analyzing output
data from computer simulations of single systems. In par-
ticular, it focuses on the estimation of steady-state system
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system of interest. A performance measure of a system is
called asteady-state parametdrit is a characteristic of the
equilibrium distribution of an output stochastic process. An
example is the simulation of a continuously operating com-
munication system where the objective is the computation

parameters. The estimation techniques include the replica- of the mean delay of a data packet.

tion/deletion approach, the regenerative method, the batch

means method, and the standardized time series method.
1 INTRODUCTION

The primary purpose of most simulation studies is the ap-
proximation of prescribed system parameters with the ob-
jective of identifying parameter values that optimize some
system performance measures. If some of the input pro-
cesses driving a simulation are random, then the output
data are also random and runs of the simulation program
only result inestimatesof system performance measures.
Unfortunately, a simulation run does not usually produce
independent, identically distributed (i.i.d.) observations;
therefore “classical” statistical techniques are not directly
applicable to the analysis of simulation output.

Section 2 discusses methods for analyzing output from
terminating simulations. Section 3 reviews approaches for
removing bias due to initial conditions in steady-state simu-
lations. Section 4 presents techniques for point and interval
estimation of steady-state parameters.

2  FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system untiloutput data
X1, X2, ..., X, are collected with the objective of estimating
w = E(X,), whereX, = %Z?:l X; is the sample mean

of the data. For exampleX; may be the transit time of
unit i through a network of queues or the total time station
i is busy during the'th hour. Clearly,X, is an unbiased
estimator foru. Unfortunately, theX;’s are generally
dependent random variables making the estimation of the

A simulation study consists of several steps such as data variance Vark,) a nontrivial problem. In many queueing

collection, coding and verification, model validation, exper-
imental design, output data analysis, and implementation.
This paper focuses on statistical methods for computing

systems th&;'s are positively correlated making the familiar
estimators?(n)/n = Y /_1(X; — X»)?/[n(n — 1)] a highly
biased estimator of Vak(,,). In particular, if theX;'s are

confidence intervals for system performance measures from positively corellated, one haB[S%(n)/n] < Var(X,,).

output data.

There are two types of simulations with regard to output
analysis:

Finite-horizon simulations. In this case the simulation

starts in a specific state, such as the empty and idle state,

and is run until some terminating event occurs. The output

process is not expected to achieve any steady-state behavior

and any parameter estimated from the output data will be
transient in the sense that its value will depend upon the
initial conditions. An example is the simulation of a vehicle
storage and distribution facility for a week.

Steady-state simulations. The purpose of a steady-
state simulation is the study of the long-run behavior of the
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To overcome this problem, one can rarindependent
replications of the system simulation. Assume that run
i produces the output dat&;1, X;2,..., X;»,. Then the

sample means

1 n
Yi=— ZXij
j=1

are i.i.d. random variables,
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is also an unbiased estimator @f and

Vg =

1 k
Y (¥ = V)P
k—1 =

is an unbiased estimator of \(&,). If in addition » and
k are sufficiently large, an approximate—la confidence

interval for u is
Yi £ t—1,1-a/2y Vr/k,

wheret, , represents the/-quantile of ther distribution
with d degrees of freedom.

Alexopoulos and Seila (1998, section 7.2.2) and Law
and Kelton (2000) review sequential procedures for deter-
mining the number of replications required to estimate
with a fixed absolute or relative precision. The procedure
for constructing a - « confidence interval fop with a
small absolute errofY;, — u| < g is based on Chow and

1)

Robbins (1965) (see also Nadas 1969). It stops when the

halfwidthz;_1 142/ \7R/k < B. The method for obtaining
an estimate with a relative errp¥y — |/|u| bounded from
above byy with probability at least - « has performed
well for initial sample sizekg > 10 andy < 0.15.

The method of replications can also be used for estimat-
ing performance measures other than means. For example, X;(w) =

suppose that we want to estimate hguantile, say,, of

The most commonly used method for eliminating the
bias of X,, identifies a index <! < n — 1 andtruncates
the observationX1, ..., X;. Then the estimator

is generally less biased th&h because the initial conditions
primarily affect data at the beginning of a run. Several
procedures have been proposed for the detection of a cutoff
index! (see Chance and Schruben (1992); Fishman 1996;
Gafarian et al. 1978; Goldsman et al. (1994); Kelton 1989;
Ockerman (1995); Schruben 1982; Schruben et al. 1983;
Wilson and Pritsker 1978a,b).

The graphical procedure of Welch (1983) is popular
due to its simplicity and generality. This method uges
independent replications with thiéh replication producing
observationsX;1, X;2, ..., X;, and computes the averages

k
Xj= ZX,‘/, j=1...,n.
i=1

Then for a giventime windoww, the procedure plots the
moving averages

=

w+l<j<n—w

l<j=zw

1 w v .
2w+1 Zm:7w X]‘H’n
1 j-1 v

2j-1 m:—j+1Xj+m

the average queue size in a single-server queueing system

during a fixed time window. We ruk independent repli-
cations, denote by; the average observed queue length
during replicationi, and letYq) < Yo < --- < Y be
the order statistics corresponding to thés. Then a point
estimate fory,, is

N Yap ifkpisaninteger

&p

- Y(lkp+1)) otherwise

and a confidence interval fgy, is described in Alexopoulos
and Seila (1998, section 7.3.2).

3 INITIALIZATION PROBLEMS FOR
STEADY-STATE SIMULATIONS

One of the hardest problems in steady-state simulations is the

removal of thenitialization bias Suppose thatX; : i > 1}

is a discrete-time output stochastic process from a single Cov(

run of a steady-state simulation with initial conditions
and assume that, as— oo, P(X, < x|I) — P(X < x),
where X is the corresponding steady-state random vari-
able. The steady-state mean of the procéXs} is

w = lim,_ . E(X,|I). The problem with the use of the
estimatorX,, for a finiten is that E(X,|1) # u.
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againstj. If the plot is reasonably smooth, thérs chosen

to be the value ofi beyond which the sequence of moving
averages converges. Otherwise, a different time window is
chosen and a new plot is drawn. The choicexofmay be

a difficult problem for congested systems with output time
series having autocorrelation functions with very long tails
(see Alexopoulos and Seila 1998, Example 7).

4 STEADY-STATE ANALYSIS

We focus on estimation methods for the steady-state mean
wu of a discrete-time output process. Analogous methods
for analyzing continuous-time output data are described in
a variety of texts (Bratley, Fox, and Schrage 1987; Fishman
1978; Law and Kelton 2000). The procd3g} is calledsta-
tionary if the joint distribution ofX; ;,, X;4 55, ..., Xiqj,

is independent of for all indices ji, j2, ..., jr and all

k> 1 If E(X;) = u, Var(X;) < oo for all i, and the

X;, Xi+j) is independent of, then {X;} is called
weakly stationary
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4.1 The Replication/Deletion Approach 1974). More precisely, assume that there are (random)
time indices 1< Ty < T» < --- such that the portion
This approach runsindependentreplications, each oflength  {Xr, + j, j > O} has the same distribution for eacland is
n observations, and uses the method of Welch (1983) to independent of the portion prior to tin#. The portion of
discard the first observations from each run. One then the process between two successive regeneration epochs is
uses the i.i.d. sample means called acycle. LetY; = Zf’:{l X;andZ; =T;41 — T;
fori =1,2,... and assume thak(Z;) < co. Then the
meanyu is given byu = E(Y1)/E(Z1).

Now suppose that one simulates the procé¢xs)
over n cycles and collects the observatiofs, ..., Y,
and Z1,...,Z,. Thenj = Y,/Z, is a strongly con-
sistent estimator ofx. Furthermore, confidence intervals
t for u© can be constructed by using the random variables
Yill, n) = }Z Y:(l,n) Y, —uZ;,i =1,...,n and the central limit theorem (see

k= Iglehart 1975).
The regenerative method is difficult to apply in prac-

n

1
Yi(l,n) = p— Xij
j=it 1

to compute the point estimate

and the approximate 4 « confidence interval fop tice because the majority of simulations have either no
regenerative points or very long cycle lengths. Two classes
= N of systems this method has successfully been applied to

Yil,n) £ ti1.1-apy VR(n, D)/ K, 2 Y Y PP

are inventory systems and highly reliable communications

A ) ) systems with repairs.
where Vg (I, n) is the sample variance of thg(/, n)’s.

The method is simple and general, but involves the 4 3 The Batch Means Method
choice of three parameters, n and k. Here are a few

points: (&) As! increases for fixed:, the “systematic”  The method of batch means is frequently used to estimate

error in eacht; (, n) due to the initial conditions decreases. the steady-state mean or the VaxX,,) (for finite n) and
However, the sampling error increases because of the smallerqyes jts popularity to its simplicity and effectiveness.

number qf observatioqs. (b) Asincreases for fixed, the To motivate the method, suppose temporarily that the
systematic and sampling errors ia(/, n) decrease. (C)  gataxy,..., X, are from a weakly stationary process with
The systematic error in the sample meafd, n) cannot liMy oo nVAr(X,) = 02 < co. (The parameter?2 is

be reduced by increasing the number of replicationgd) called the time-average variance of the prodegs.) Then
For fixed number of observations per replicatior-/ and split the data intd batches each consisting of observa-
under a mlld con_dltlons on the first two momentSYQGL n), _ tions. (Assume = kb.) Theith batch consists of the obser-
the confidence interval (2) is asymptotically valid only if Vations X ;_1yp41, X(i—1yps2. .-+ Xip, fOr i = 1,2, ...k,

l/Ink — oo ask — oo (Fishman 2000). Thismeansthatas gnd theith batch mearis given by
one makes more runs in an attempt to compute a narrower

confidence interval, the truncation indéxmust increase 12
faster than Ik for the confidence interval to achieve the Y;(b) = = Zx(i_l)bﬂ_
nominal coverage. This requirement is hard to implement b j=1
in practice.
The reader should also keep in mind that this method For fixed m, let gr% = Var(X,,). Since the batch

is also potentially wasteful of data as the truncated portion means proces$Y;(b),i > 1} is also weakly stationary,
is removed from each replication. The regenerative method some algebra yields
(section 4.2) and the batch means method (section 4.3) seek

to overcome these disadvantages. o2 no? — bo
O'n2 = Tb 1 —nb 2 b (3)
4.2 The Regenerative Method %

This method assumes the identification of time indices at AS aresultg;/k approximates,; with error that diminishes

which the procesgX;} probabilistically starts overand as firstn — oo and thenb — oo with b/n — 0. Equiv-
uses these regeneration epochs for obtaining i.i.d. random alently, the correlation among the batch means diminishes

variables which can be used for computing point and interval @S® andn approach infinity withb/n — 0.

estimates for the mean. The method was proposed by
Crane and Iglehart (1974a,b, 1975) and Fishman (1973,
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To use the last limiting property, one forms the grand
batch mean

1 k
=22 i),
i=1
estimatess? by
Va(n, k) = —— Z(Y (b) — Xn)?,

and computes the following approximate-1x confidence
interval for u:

Xn £ 0112y Vg(n, k)/k.

The main problem with the application of the batch
means method in practice is the choice of the batchisize

(4)

The literature contains several batch selection approaches

for fixed sample size; see Conway (1963), Fishman (1978),
Law and Carson (1979), Mechanic and McKay (1966), and
Schriber and Andrews (1979). Schmeiser (1982) reviews

The ASA is not restrictive as it holds under relatively
weak assumptions for a variety of stochastic processes in-
cluding Markov chains, regenerative processes and certain
gueueing systems (see Damerdji 1994). The constant
is closer to ¥2 for processes having little autocorrelation,
while it is closer to zero for processes with high autocor-
relation.

4.5 Batching Rules

Fishman and Yarberry (1997) and Fishman (1996, Chapter 6)
presented a thorough discussion of batching rules. Equation
(3) suggests that fixing the number of batches and letting
the batch size grow as — oo ensures that?/k — o2,
This motivates the Fixed Number of Batches (FNB) rule
that sets the number of batcheskadnd uses batch sizes
b, = |n/k] asn increases.

The FNB rule along with AWA imply that, as — oo,
X, 2 uand

Xn— 1 d

—— > -1
J Ve, k) k

the above procedures and concludes that selecting between

10 and 30 batches should suffice for most simulation ex-
periments. The major drawback of these methods is their
inability to yield a consistent variance estimator.

4.4 Consistent Estimation Batch Means Methods

These methods assume that a central limit theorem holds

(X, — 1) 4, 0N (0,1) asn — o (5)
and aim at constructing a consistent estimatorofgy and
an asymptotically valid confidence interval far

Chien et al. (1997) considered stationary processes and,
under quite general moment and sample path conditions,
showed that as both k — oo, MSE bV, (b)) — 0. Notice

that mean squared error consistency differs from consistency.

The limiting result (5) isimplied under the following two
assumptions, wher@V (¢), ¢+ > 0} is the standard Brownian
motion process (see Resnick 1994, Chapter 6).

Assumption of Weak Approximation (AWA).

n(X, —

Ooo

—d> W) asn — oo.

Assumption of Strong Approximation (ASA). There
exists a constant € (0, 1/2] and a finite random variable
C such that, with probability one,

|n()_(n — W) —oxcW(n)| < cnt/?*  asn — oo.
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(see Glynn and Iglehart 1990). Hence, (4) is an asymptot-
ically valid confidence interval fop. Unfortunately, the
FNB rule has two major limitations: (a) Sindg Vi(b) is

not a consistent estimator ofo, the confidence interval (4)
tends to be wider than the interval a consistent estimation
method would produce. (b) Statistical fluctuations in the
halfwidth of the confidence interval (4) do not diminish
relative to statistical fluctuation in the sample mean (see
Fishman 1996, pp. 544-545).

The limitations of the FNB rule can be removed by
simultaneously increasing the batch size and the number
of batches. Indeed, assume that ASA holds and consider
batch sizes of the form, = [n?], 6 € (1—2x,1). Then

asn — oo, X, —% Iy b Ve, ky) —5 02 and

an — Xn — M
Y, Ve, kn)/ kn

(see Damerdji 1994). The last display implies that

X, £ Tky—1,1—a/2/ Ve (n, kn)/kn

is an asymptotically valid £ « confidence interval fog. In
particular, the Square Root (SQRT) rule that uges 1/2
(bn = /1], ky = |/n])isvalidif 1/4 < A < 1/2. Notice
that the last inequality is violated by processes having high
autocorrelations ~ 0).

The motivation for the SQRT rule comes from Chien
(1989), who (under some additional moment conditions)

- 4, N@©, 1) (6)
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showed that the convergencey, to theN (0O, 1) distribu- of observationsXy, ..., X, the second batch consists of
tion is fastest if bottb,, andk, grow proportionally to,/x. Xo, ..., Xpy1, €tc. The OBM estimator of. is
Unfortunately, in practice the SQRT rule tends to seriously

underestimate the Vak(,) for fixed n. B 1 bt
With the contrasts between the FNB and SQRT rules in Yo = n—b+1 Z Yi(b),
mind, Fishman and Yarberry proposed two procedures that i=1

dynamically shift between the two rules. Both procedures

perform “interim reviews” and compute confidence intervals where
at timesn; ~ n12/~1,1 =1,2,.... The correlation test for Lt
the batch means is based on von Neumann’s statistic Yi(b) = Z Xj, i=1,....n—-b+1
Yi_o(Yi(by) = Yioa(ba))?
Cln ky) =1— . — , .
2% i1 (Yi(by) — Xp) are the respective batch means, and has sample variance
(see von Neumann 1941ab; Young 1941). R n—b+1 _
The LBATCH Procedure. At time n,, if the hypothesis Vo = p— Z (Yi(b) — Yo)*.
test detects autocorrelation between the batch means, the i=1

batching for the next review is determined by the FNB rule. _
If the test fails to detect correlation, all future reviews omit  The following list contains properties of the estimatdis
the test and employ the SQRT rule. and Vp: (a) The OBM estimator is a weighted average
The ABATCH Procedure. If at time n; the hypothesis ~ ©Of non-overlapping batch means estimators. (b) Asymptot-
test detects correlation between the batch means, the nextically (asn,b — oo andb/n — 0), the OBM variance
review employs the FNB rule. If the test fails to detect estimatorVy and the non-overlapping batch means variance
correlation, the next review employs the SQRT rule. estlmatorVB Vg(n. k) have the same expectation, but
Both procedures yield random sequences of batch sizes. Var(Vo)/Var(Vg) — 2/3 (Meketon and Schmeiser 1984).
Under relatively mild assumptions, these sequences imply (€) The behavior of V) appears to be less sensitive to
convergence results analogous to (6). The respective algo-the choice of the batch size than the behavior of(VaJ
rithms requireO (n) time andO (log, n) space, where is (Song and Schmeiser 1995, Table 1). (d)Xf;} satisfies
the desired sample size (see Alexopoulos et al. 1997 andASA and {b,} is a sequence of batches with = [n”],
Yarberry 1993). Although like complexities are known for 6 € (1—24, l) and192/71 — 0 asn — oo, then (Damerdii
static fixed batch size algorithms, the dynamic setting of 1994)5,V, <5 o2.
the LBATCH and ABATCH procedures offers an important Welch (1987) noted that both traditional batch means
additional advantage not present in the static approach. As and overlapping batch means are special cases of spectral
the analysis evolves with increasing sample path length, it estimation at frequency 0 and, more importantly, suggested
allows a user to assess how well the estimated variance of that overlapping batch means yield near-optimal variance
the sample mean stabilizes. This assessment is essential taeduction when one forms sub-batches within each batch
gauge the quality of the confidence interval for the sample and applies the method to the sub-batches. For example,
mean. The LABATCH.2 implementation is the only com- a batch of size 64 is split into 4 sub-batches and the first
puter package that automatically generates the data for this (overlapping) batch consists of observatioXis, . .., Xga,
assessment. C, FORTRAN and SIMSCRIPT I1.5 codes of the second consists of observatioXig;, . .., Xgo, etc.
LABATCH.2 can be downloaded via anonymous ftp from
the site http://www.or.unc.edu/~gfish/labatch.2.html. 4.6 The Standardized Time Series Method

4.5.1 Overlapping Batch Means This method was proposed by Schruben (1983). The stan-
dardized time series is defined by

An interesting variation of the traditional batch means

method is the method adverlappingbatch means (OBM) Lnt](Xn — X))

proposed by Meketon and Schmeiser (1984). For given (1) = T«/ﬁ’

batch sizeb, this method uses alt — b + 1 overlapping

batches to estimate and VarX,). The first batch consists  and, under some mild assumptions (e.g., strict stationarity
and ¢-mixing),

O<tr<1

(VX = 1), 00Ty) —5> (G0 W (1), 000 B).
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where{B(¢) : t > 0} isthe standard Brownian bridge process 4.8 Multivariate Estimation
(see Billingsley 1968). Informally{X;} is ¢-mixing if X;

and X;,; are approximately independent for large Frequently, the output from a single simulation run is used
If A = fol 05 B(t)dt is the area undeB, then the for estimating several system parameters. The estimators of
identity these parameters are typically correlated. As an example,
consider the average customer delays at two stations on

E(A% =02 /12 a path of a queueing network. In general, Bonferroni's

inequality can be used for computing a conservative confi-
dence coefficient for a set of confidence intervals. Indeed,
suppose thatD; is a 1— « confidence interval for the
parameten;, i =1, ...,k Then

implies thabozo can be estimated by multiplying an estimator
of E(A%) by 12. Suppose that the dafé, ..., X, are
divided intok (contiguous) batches, each of size Then
for sufficiently largen the random variables

k
P (m{';l{ﬂi € D,'}) >1-— ZO(,’ .

i=1

b
AiZZ[(W‘Fl)/Z_j]X(ifl)bJrj’ i=1...k
j=1
i . ) This result can have serious implications asiee 10
becozmg approximately i.i.d. normal and an estimator of 5.4, _ 010 the r.h.s. of the above inequality is equal to
E(A9) s 0. If the overall confidence level must be at least &,
. 1 k then thea;’s can be chosen so th@leai = «. The
E(A?) = ——— ZAIZ existing multivariate estimation methods include Charnes
(0° = bk — (1989, 1990, 1991) and Chen and Seila (1987).

Hence an (approximate)-1« confidence interval fop is
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