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ABSTRACT

This paper reviews statistical methods for analyzing outp
data from computer simulations of single systems. In pa
ticular, it focuses on the estimation of steady-state syst
parameters. The estimation techniques include the repli
tion/deletion approach, the regenerative method, the ba
means method, and the standardized time series metho

1 INTRODUCTION

The primary purpose of most simulation studies is the a
proximation of prescribed system parameters with the o
jective of identifying parameter values that optimize som
system performance measures. If some of the input p
cesses driving a simulation are random, then the outp
data are also random and runs of the simulation progr
only result inestimatesof system performance measures
Unfortunately, a simulation run does not usually produc
independent, identically distributed (i.i.d.) observation
therefore “classical” statistical techniques are not direc
applicable to the analysis of simulation output.

A simulation study consists of several steps such as d
collection, coding and verification, model validation, expe
imental design, output data analysis, and implementatio
This paper focuses on statistical methods for computi
confidence intervals for system performance measures fr
output data.

There are two types of simulations with regard to outp
analysis:

Finite-horizon simulations. In this case the simulation
starts in a specific state, such as the empty and idle st
and is run until some terminating event occurs. The outp
process is not expected to achieve any steady-state beha
and any parameter estimated from the output data will
transient in the sense that its value will depend upon t
initial conditions. An example is the simulation of a vehicl
storage and distribution facility for a week.

Steady-state simulations. The purpose of a steady
state simulation is the study of the long-run behavior of th
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system of interest. A performance measure of a system
called asteady-state parameterif it is a characteristic of the
equilibrium distribution of an output stochastic process. An
example is the simulation of a continuously operating com
munication system where the objective is the computatio
of the mean delay of a data packet.

Section 2 discusses methods for analyzing output from
terminating simulations. Section 3 reviews approaches fo
removing bias due to initial conditions in steady-state simu
lations. Section 4 presents techniques for point and interv
estimation of steady-state parameters.

2 FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system untiln output data
X1, X2, . . . , Xn are collected with the objective of estimating
µ = E(X̄n), whereX̄n = 1

n

∑n
i=1Xi is the sample mean

of the data. For example,Xi may be the transit time of
unit i through a network of queues or the total time station
i is busy during theith hour. Clearly,X̄n is an unbiased
estimator forµ. Unfortunately, theXi ’s are generally
dependent random variables making the estimation of th
variance Var(̄Xn) a nontrivial problem. In many queueing
systems theXi ’s are positively correlated making the familiar
estimatorS2(n)/n =∑n

i=1(Xi − X̄n)2/[n(n− 1)] a highly
biased estimator of Var(̄Xn). In particular, if theXi ’s are
positively corellated, one hasE[S2(n)/n] < Var(X̄n).

To overcome this problem, one can runk independent
replications of the system simulation. Assume that ru
i produces the output dataXi1, Xi2, . . . , Xin. Then the
sample means

Yi = 1

n

n∑
j=1

Xij

are i.i.d. random variables,

Ȳk = 1

k

k∑
i=1

Yi
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is also an unbiased estimator ofµ, and

V̂R = 1

k − 1

k∑
i=1

(Yi − Ȳk)2

is an unbiased estimator of Var(X̄n). If in addition n and
k are sufficiently large, an approximate 1− α confidence
interval forµ is

Ȳk ± tk−1,1−α/2
√
V̂R/k , (1)

where td,γ represents theγ -quantile of thet distribution
with d degrees of freedom.

Alexopoulos and Seila (1998, section 7.2.2) and La
and Kelton (2000) review sequential procedures for det
mining the number of replications required to estimateµ
with a fixed absolute or relative precision. The procedu
for constructing a 1− α confidence interval forµ with a
small absolute error|Ȳk − µ| ≤ β is based on Chow and
Robbins (1965) (see also Nadas 1969). It stops when

halfwidth tk−1,1−α/2
√
V̂R/k ≤ β. The method for obtaining

an estimate with a relative error|Ȳk−µ|/|µ| bounded from
above byγ with probability at least 1− α has performed
well for initial sample sizek0 ≥ 10 andγ ≤ 0.15.

The method of replications can also be used for estim
ing performance measures other than means. For exam
suppose that we want to estimate thep-quantile, sayξp, of
the average queue size in a single-server queueing sys
during a fixed time window. We runk independent repli-
cations, denote byYi the average observed queue leng
during replicationi, and letY(1) < Y(2) < · · · < Y(k) be
the order statistics corresponding to theYi ’s. Then a point
estimate foryp is

ξ̂p =
{
Y(kp) if kpisaninteger

Y(bkp+1c) otherwise

and a confidence interval forξp is described in Alexopoulos
and Seila (1998, section 7.3.2).

3 INITIALIZATION PROBLEMS FOR
STEADY-STATE SIMULATIONS

One of the hardest problems in steady-state simulations is
removal of theinitialization bias. Suppose that{Xi : i ≥ 1}
is a discrete-time output stochastic process from a sin
run of a steady-state simulation with initial conditionsI
and assume that, asn→∞, P(Xn ≤ x|I )→ P(X ≤ x),
whereX is the corresponding steady-state random va
able. The steady-state mean of the process{Xi} is
µ = limn→∞ E(Xn|I ). The problem with the use of the
estimatorX̄n for a finite n is thatE(X̄n|I ) 6= µ.
102
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The most commonly used method for eliminating the
bias of X̄n identifies a index 1≤ l ≤ n− 1 and truncates
the observationsX1, . . . , Xl . Then the estimator

X̄n,l = 1

n− l
n∑

i=l+1

Xi

is generally less biased thanX̄n because the initial conditions
primarily affect data at the beginning of a run. Severa
procedures have been proposed for the detection of a cut
index l (see Chance and Schruben (1992); Fishman 199
Gafarian et al. 1978; Goldsman et al. (1994); Kelton 1989
Ockerman (1995); Schruben 1982; Schruben et al. 198
Wilson and Pritsker 1978a,b).

The graphical procedure of Welch (1983) is popula
due to its simplicity and generality. This method usesk
independent replications with theith replication producing
observationsXi1, Xi2, . . . , Xin and computes the averages

X̄j = 1

k

k∑
i=1

Xij , j = 1, . . . , n.

Then for a giventime windoww, the procedure plots the
moving averages

X̄j (w) =
{

1
2w+1

∑w
m=−w X̄j+m w + 1≤ j ≤ n− w

1
2j−1

∑j−1
m=−j+1 X̄j+m 1≤ j ≤ w

againstj . If the plot is reasonably smooth, thenl is chosen
to be the value ofj beyond which the sequence of moving
averages converges. Otherwise, a different time window
chosen and a new plot is drawn. The choice ofw may be
a difficult problem for congested systems with output tim
series having autocorrelation functions with very long tail
(see Alexopoulos and Seila 1998, Example 7).

4 STEADY-STATE ANALYSIS

We focus on estimation methods for the steady-state me
µ of a discrete-time output process. Analogous method
for analyzing continuous-time output data are described
a variety of texts (Bratley, Fox, and Schrage 1987; Fishma
1978; Law and Kelton 2000). The process{Xi} is calledsta-
tionary if the joint distribution ofXi+j1, Xi+j2, . . . , Xi+jk
is independent ofi for all indices j1, j2, . . . , jk and all
k ≥ 1. If E(Xi) = µ, Var(Xi) < ∞ for all i, and the
Cov(Xi,Xi+j ) is independent ofi, then {Xi} is called
weakly stationary.
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4.1 The Replication/Deletion Approach

This approach runsk independent replications, each of lengt
n observations, and uses the method of Welch (1983)
discard the firstl observations from each run. One the
uses the i.i.d. sample means

Yi(l, n) = 1

n− l
n∑

j=l+1

Xij

to compute the point estimate

Ȳk(l, n) = 1

k

k∑
i=1

Yi(l, n)

and the approximate 1− α confidence interval forµ

Ȳk(l, n)± tk−1,1−α/2
√
V̂R(n, l)/k , (2)

whereV̂R(l, n) is the sample variance of theYi(l, n)’s.
The method is simple and general, but involves th

choice of three parameters,l, n and k. Here are a few
points: (a) As l increases for fixedn, the “systematic”
error in eachYi(l, n) due to the initial conditions decreases
However, the sampling error increases because of the sma
number of observations. (b) Asn increases for fixedl, the
systematic and sampling errors inYi(l, n) decrease. (c)
The systematic error in the sample meansYi(l, n) cannot
be reduced by increasing the number of replicationsk. (d)
For fixed number of observations per replicationn− l and
under a mild conditions on the first two moments ofYi(l, n),
the confidence interval (2) is asymptotically valid only i
l/ ln k→∞ ask→∞ (Fishman 2000). This means that a
one makes more runs in an attempt to compute a narrow
confidence interval, the truncation indexl must increase
faster than lnk for the confidence interval to achieve the
nominal coverage. This requirement is hard to impleme
in practice.

The reader should also keep in mind that this meth
is also potentially wasteful of data as the truncated porti
is removed from each replication. The regenerative meth
(section 4.2) and the batch means method (section 4.3) s
to overcome these disadvantages.

4.2 The Regenerative Method

This method assumes the identification of time indices
which the process{Xi} probabilistically starts over and
uses these regeneration epochs for obtaining i.i.d. rand
variables which can be used for computing point and interv
estimates for the meanµ. The method was proposed by
Crane and Iglehart (1974a,b, 1975) and Fishman (19
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1974). More precisely, assume that there are (random
time indices 1≤ T1 < T2 < · · · such that the portion
{XTi + j, j ≥ 0} has the same distribution for eachi and is
independent of the portion prior to timeTi . The portion of
the process between two successive regeneration epoch
called acycle. LetYi = ∑Ti+1−1

j=Ti Xj andZi = Ti+1 − Ti
for i = 1,2, . . . and assume thatE(Zi) < ∞. Then the
meanµ is given byµ = E(Y1)/E(Z1).

Now suppose that one simulates the process{Xi}
over n cycles and collects the observationsY1, . . . , Yn
and Z1, . . . , Zn. Then µ̂ = Ȳn/Z̄n is a strongly con-
sistent estimator ofµ. Furthermore, confidence intervals
for µ can be constructed by using the random variable
Yi − µZi, i = 1, . . . , n and the central limit theorem (see
Iglehart 1975).

The regenerative method is difficult to apply in prac-
tice because the majority of simulations have either n
regenerative points or very long cycle lengths. Two classe
of systems this method has successfully been applied
are inventory systems and highly reliable communication
systems with repairs.

4.3 The Batch Means Method

The method of batch means is frequently used to estima
the steady-state meanµ or the Var(X̄n) (for finite n) and
owes its popularity to its simplicity and effectiveness.

To motivate the method, suppose temporarily that th
dataX1, . . . , Xn are from a weakly stationary process with
limn→∞ nVar(X̄n) = σ 2∞ < ∞. (The parameterσ 2∞ is
called the time-average variance of the process{Xi}.) Then
split the data intok batches, each consisting ofb observa-
tions. (Assumen = kb.) Theith batch consists of the obser-
vationsX(i−1)b+1, X(i−1)b+2, . . . , Xib, for i = 1,2, . . . , k,
and theith batch meanis given by

Yi(b) = 1

b

b∑
j=1

X(i−1)b+j .

For fixed m, let σ 2
m = Var(X̄m). Since the batch

means process{Yi(b), i ≥ 1} is also weakly stationary,
some algebra yields

σ 2
n =

σ 2
b

k

(
1+ nσ

2
n − bσ 2

b

bσ 2
b

)
. (3)

As a result,σ 2
b /k approximatesσ 2

n with error that diminishes
as firstn→ ∞ and thenb → ∞ with b/n→ 0. Equiv-
alently, the correlation among the batch means diminishe
asb andn approach infinity withb/n→ 0.
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To use the last limiting property, one forms the gran
batch mean

X̄n = 1

k

k∑
i=1

Yi(b),

estimatesσ 2
b by

V̂B(n, k) = 1

k − 1

k∑
i=1

(Yi(b)− X̄n)2,

and computes the following approximate 1− α confidence
interval forµ:

X̄n ± tk−1,1−α/2
√
V̂B(n, k)/k . (4)

The main problem with the application of the batc
means method in practice is the choice of the batch sizeb.
The literature contains several batch selection approac
for fixed sample size; see Conway (1963), Fishman (197
Law and Carson (1979), Mechanic and McKay (1966), a
Schriber and Andrews (1979). Schmeiser (1982) revie
the above procedures and concludes that selecting betw
10 and 30 batches should suffice for most simulation e
periments. The major drawback of these methods is th
inability to yield a consistent variance estimator.

4.4 Consistent Estimation Batch Means Methods

These methods assume that a central limit theorem hol

√
n(X̄n − µ) d−→ σ∞N(0, 1) asn→∞ (5)

and aim at constructing a consistent estimator forσ 2∞ and
an asymptotically valid confidence interval forµ.

Chien et al. (1997) considered stationary processes a
under quite general moment and sample path conditio
showed that as bothb, k→∞, MSE(bV̂k(b))→ 0. Notice
that mean squared error consistency differs from consisten

The limiting result (5) is implied under the following two
assumptions, where{W(t), t ≥ 0} is the standard Brownian
motion process (see Resnick 1994, Chapter 6).

Assumption of Weak Approximation (AWA).

n(X̄n − µ)
σ∞

d−→ W(n) asn→∞.

Assumption of Strong Approximation (ASA). There
exists a constantλ ∈ (0, 1/2] and a finite random variable
C such that, with probability one,

|n(X̄n − µ)− σ∞W(n)| ≤ Cn1/2−λ asn→∞.
104
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The ASA is not restrictive as it holds under relativel
weak assumptions for a variety of stochastic processes
cluding Markov chains, regenerative processes and cert
queueing systems (see Damerdji 1994). The constanλ

is closer to 1/2 for processes having little autocorrelation
while it is closer to zero for processes with high autoco
relation.

4.5 Batching Rules

Fishman andYarberry (1997) and Fishman (1996, Chapte
presented a thorough discussion of batching rules. Equat
(3) suggests that fixing the number of batches and letti
the batch size grow asn→ ∞ ensures thatσ 2

b /k → σ 2
n .

This motivates the Fixed Number of Batches (FNB) ru
that sets the number of batches atk and uses batch sizes
bn = bn/kc asn increases.

The FNB rule along with AWA imply that, asn→∞,

X̄n
p−→ µ and

X̄n − µ√
V̂B(n, k)/k

d−→ tk−1

(see Glynn and Iglehart 1990). Hence, (4) is an asympt
ically valid confidence interval forµ. Unfortunately, the
FNB rule has two major limitations: (a) SincebnV̂k(b) is
not a consistent estimator ofσ 2∞, the confidence interval (4)
tends to be wider than the interval a consistent estimati
method would produce. (b) Statistical fluctuations in th
halfwidth of the confidence interval (4) do not diminish
relative to statistical fluctuation in the sample mean (s
Fishman 1996, pp. 544–545).

The limitations of the FNB rule can be removed b
simultaneously increasing the batch size and the num
of batches. Indeed, assume that ASA holds and consi
batch sizes of the formbn = bnθc, θ ∈ (1− 2λ, 1). Then
asn→∞, X̄n

a.s.−→ µ, bnV̂B(n, kn)
a.s.−→ σ 2∞, and

Zkn =
X̄n − µ√

V̂B(n, kn)/kn

d−→ N(0, 1) (6)

(see Damerdji 1994). The last display implies that

X̄n ± tkn−1,1−α/2
√
V̂B(n, kn)/kn

is an asymptotically valid 1−α confidence interval forµ. In
particular, the Square Root (SQRT) rule that usesθ = 1/2
(bn = b√nc, kn = b√nc) is valid if 1/4< λ < 1/2. Notice
that the last inequality is violated by processes having hi
autocorrelation(λ ≈ 0).

The motivation for the SQRT rule comes from Chie
(1989), who (under some additional moment condition
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showed that the convergence ofZkn to theN(0, 1) distribu-
tion is fastest if bothbn andkn grow proportionally to

√
n.

Unfortunately, in practice the SQRT rule tends to serious
underestimate the Var(X̄n) for fixed n.

With the contrasts between the FNB and SQRT rules
mind, Fishman and Yarberry proposed two procedures t
dynamically shift between the two rules. Both procedur
perform “interim reviews” and compute confidence interva
at timesnl ≈ n12l−1, l = 1,2, . . .. The correlation test for
the batch means is based on von Neumann’s statistic

C(n, kn) = 1−
∑k
i=2(Yi(bn)− Yi−1(bn))

2

2
∑k
i=1(Yi(bn)− X̄n)2

(see von Neumann 1941ab; Young 1941).
The LBATCH Procedure. At time nl , if the hypothesis
test detects autocorrelation between the batch means,
batching for the next review is determined by the FNB rul
If the test fails to detect correlation, all future reviews om
the test and employ the SQRT rule.
The ABATCH Procedure. If at time nl the hypothesis
test detects correlation between the batch means, the n
review employs the FNB rule. If the test fails to detec
correlation, the next review employs the SQRT rule.

Both procedures yield random sequences of batch siz
Under relatively mild assumptions, these sequences im
convergence results analogous to (6). The respective al
rithms requireO(n) time andO(log2 n) space, wheren is
the desired sample size (see Alexopoulos et al. 1997 a
Yarberry 1993). Although like complexities are known fo
static fixed batch size algorithms, the dynamic setting
the LBATCH and ABATCH procedures offers an importan
additional advantage not present in the static approach.
the analysis evolves with increasing sample path length
allows a user to assess how well the estimated variance
the sample mean stabilizes. This assessment is essenti
gauge the quality of the confidence interval for the samp
mean. The LABATCH.2 implementation is the only com
puter package that automatically generates the data for
assessment. C, FORTRAN and SIMSCRIPT II.5 codes
LABATCH.2 can be downloaded via anonymous ftp from
the site http://www.or.unc.edu/∼gfish/labatch.2.html.

4.5.1 Overlapping Batch Means

An interesting variation of the traditional batch mean
method is the method ofoverlappingbatch means (OBM)
proposed by Meketon and Schmeiser (1984). For giv
batch sizeb, this method uses alln − b + 1 overlapping
batches to estimateµ and Var(X̄n). The first batch consists
105
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of observationsX1, . . . , Xb, the second batch consists o
X2, . . . , Xb+1, etc. The OBM estimator ofµ is

ȲO = 1

n− b + 1

n−b+1∑
i=1

Yi(b),

where

Yi(b) = 1

b

i+b−1∑
j=i

Xj , i = 1, . . . , n− b + 1

are the respective batch means, and has sample varian

V̂O = 1

n− b
n−b+1∑
i=1

(Yi(b)− ȲO)2.

The following list contains properties of the estimatorsȲO
and V̂O : (a) The OBM estimator is a weighted averag
of non-overlapping batch means estimators. (b) Asympto
ically (as n, b → ∞ and b/n → 0), the OBM variance
estimatorV̂O and the non-overlapping batch means varianc
estimatorV̂B ≡ V̂B(n, k) have the same expectation, bu
Var(V̂O)/Var(V̂B)→ 2/3 (Meketon and Schmeiser 1984)
(c) The behavior of Var(V̂O) appears to be less sensitive to
the choice of the batch size than the behavior of Var(V̂B)

(Song and Schmeiser 1995, Table 1). (d) If{Xi} satisfies
ASA and {bn} is a sequence of batches withbn = bnθc,
θ ∈ (1− 2λ, 1) andb2

n/n→ 0 asn→∞, then (Damerdji

1994)bnV̂O
a.s.−→ σ 2∞.

Welch (1987) noted that both traditional batch mean
and overlapping batch means are special cases of spec
estimation at frequency 0 and, more importantly, suggest
that overlapping batch means yield near-optimal varian
reduction when one forms sub-batches within each bat
and applies the method to the sub-batches. For examp
a batch of size 64 is split into 4 sub-batches and the fir
(overlapping) batch consists of observationsX1, . . . , X64,
the second consists of observationsX17, . . . , X80, etc.

4.6 The Standardized Time Series Method

This method was proposed by Schruben (1983). The sta
dardized time series is defined by

Tn(t) = bntc(X̄n − X̄bntc)
σ∞
√
n

, 0 ≤ t ≤ 1

and, under some mild assumptions (e.g., strict stationar
andφ-mixing),

(
√
n(X̄n − µ), σ∞Tn) d−→ (σ∞W(1), σ∞B),
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where{B(t) : t ≥ 0} is the standard Brownian bridge proces
(see Billingsley 1968). Informally,{Xi} is φ-mixing if Xi
andXi+j are approximately independent for largej .

If A = ∫ 1
0 σ∞B(t) dt is the area underB, then the

identity

E(A2) = σ 2∞/12

implies thatσ 2∞ can be estimated by multiplying an estimato
of E(A2) by 12. Suppose that the dataX1, . . . , Xn are
divided into k (contiguous) batches, each of sizeb. Then
for sufficiently largen the random variables

Ai =
b∑
j=1

[(n+ 1)/2− j ]X(i−1)b+j , i = 1, . . . , k

become approximately i.i.d. normal and an estimator
E(A2) is

̂E(A2) = 1

(b3− b)k
k∑
i=1

A2
i .

Hence an (approximate) 1− α confidence interval forµ is

Ȳk ± tk,1−α/2
√
V̂T /n,

where

V̂T = 12 ̂E(A2).

The standardized time series method is easy to imp
ment and has asymptotic advantages over the batch me
method (see Goldsman and Schruben 1984). Howev
in practice it can require prohibitively long runs as note
by Sargent, et al. (1992). Some useful theoretical fou
dations of the method are given in Glynn and Igleha
(1990). Additional developments on the method, as we
as other standardized time series estimators, are contai
in Goldsman et al. (1990) and Goldsman and Schrub
(1984, 1990). Finally, Damerdji (1994) shows that unde
ASA in section 4.3, batching sequences withbn = bnθc,
θ ∈ (1− 2λ, 1), yield asymptotically consistent estimator
for the process varianceσ 2∞.

4.7 Quantile Estimation

A variety of methods have been proposed for estimatin
quantiles of steady-state data (see Iglehart 1976; Moo
1980; Seila 1982a,b; Heidelberger and Lewis 1984). Th
methods differ in the way the variance of the sample quant
is estimated. It should be mentioned that quantile estimati
is a harder problem than the estimation of steady-state mea
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4.8 Multivariate Estimation

Frequently, the output from a single simulation run is use
for estimating several system parameters. The estimator
these parameters are typically correlated. As an examp
consider the average customer delays at two stations
a path of a queueing network. In general, Bonferroni
inequality can be used for computing a conservative con
dence coefficient for a set of confidence intervals. Indee
suppose thatDi is a 1− α confidence interval for the
parameterµi , i = 1, . . . , k. Then

P
(
∩ki=1{µi ∈ Di}

)
≥ 1−

k∑
i=1

αi .

This result can have serious implications as fork = 10
andαi = 0.10 the r.h.s. of the above inequality is equal t
0. If the overall confidence level must be at least 1− α,
then theαi ’s can be chosen so that

∑k
i=1 αi = α. The

existing multivariate estimation methods include Charn
(1989, 1990, 1991) and Chen and Seila (1987).
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