
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

SIMPHONY � AN INTEGRATED ENVIRONMENT FOR CONSTRUCTION SIMULATION

Simaan AbouRizk
Yasser Mohamed

Department of Civil and Environmental Engineering

220 Civil and Electrical Building
University of Alberta

Edmonton, AB T6G 2G7, CANADA

ABSTRACT

This paper discusses Simphony as an integrated environ-
ment for building special purpose simulation tools for
modeling construction systems. Simphony provides
various services that enable the developer to easily control
different behaviors in the developed tool such as simula-
tion behaviors, graphical representation, statistics, and
animation. These services allow building flexible and user-
friendly tools in a relatively short time. The developed
tools (templates) then provide the building blocks that a
user (construction engineer) can use to create simulation
models for different construction domains without the need
for a deep background in simulation techniques. The
services available for the developer are discussed and
examples of their use are illustrated. Samples of the tools
developed with Simphony are also reviewed to highlight
some of their features.

1 INTRODUCTION

Simulation is one of the powerful techniques for support-
ing the decision making process for construction manage-
ment. An accurate modeling of a construction process can
help the development of better alternatives and optimiza-
tion of the involved resources. However, the use of simula-
tion techniques in the construction industry is believed to
be minimal. Complexity of simulation methodologies and
lack of deep simulation knowledge among industry person-
nel are among the main causes of weak utilization of
simulation in construction management.

Special Purpose Simulation (SPS) approach was
identified as a means for facilitating adoption of simulation
by industry. This approach enables a practitioner who is
knowledgeable in a given domain, but not necessarily in
simulation, to easily model a project within that domain
using visual modeling tools that have a high degree of
resemblance to the actual construction system. (AbouRizk
and Hajjar 1998)
190
Developing a stand-alone SPS tool requires a relative-
ly large initial investment that would, in some cases, pre-
vent the industry from considering such a tool. To over-
come this obstacle, Simphony was developed as a complete
SPS tool development and utilization environment.

Tool developers can use Simphony to implement
highly flexible simulation tools that support graphical,
hierarchical, modular and integrated modeling. It provides
them with a comprehensive and complete tool definition,
compilation and testing environment.

Tool users can then use the developed tools (tem-
plates) to build simulation models in an intuitive and user
friendly manner (Hajjar, and AbouRizk 1999).

This paper presents an overview of the tool develop-
ment process in Simphony and illustrates examples of the
available services that facilitate developing easy-to-use
simulation tools in a relatively short time. It also presents
some of the tools developed with Simphony and their
capabilities.

2 BUILDING SIMULATION TOOLS

WITH SIMPHONY

Any simulation model built in Simphony is composed of a
number of instances of modeling elements that the user
creates on screen and links together with relationships.
Each of these modeling elements has its own behaviors in
response to different events. A collection of these elements
that belong to the same construction domain and are
designed to work together in a model is referred to as a
template.

Creating a new template using Simphony involves two
main phases the design phase and the implementation phase.

The design of a template requires a complete
understanding of the domain or construction system that
will be modeled using this template. Based on that
understanding the developer can decide the elements to
include in the template and the different behaviors of each
element. Several factors have to be considered during this

7

AbouRizk and Mohamed

Figure 1: Modeling Elements and Relationships

phase in order to build a flexible and detailed yet user-
friendly and easy-to-use template. For example, a large
number of elements with small functionality for each and
comprehensive interaction between each other would result
in a flexible template capable of modeling a wide spectrum
of cases within the domain. However, the template user
(engineer) may find such template hard to use and may not
need such amount of details.

Once the design is complete, the developer can then
implement it. The implementation involves the creation of
new modeling elements in Simphony using the Template
Manager and the customization of the behaviors for each
of these elements. The different behaviors of an element
are produced by writing code in the form of event handlers
that respond to the various events. Simphony generates
these events in response to either user or system actions.

The following table illustrates the different element
behaviors that the developer can customize with a brief
description for each.

3 SIMPHONY SERVICES

To speed up and facilitate the development process
Simphony provides all standard and commonly used SPS
structures and routines in the form of libraries (services)
which are easily accessible by the developer.

A service is provided through a collection of class
properties and methods that the developer can utilize
during the implementation of the event handlers. The
different services in Simphony are closely tied with the
element behaviors shown in Table 1 and enable the
customization of these behaviors with great ease.

The following sections discuss examples of the
available services in Simphony and their functions and
utilization.

3.1 Simulation

The simulation service in Simphony provides support for
discrete-event simulation including event scheduling, next-
event polling, and queues management. More advanced

19
Table 1: Customizable Element Behaviors
Behavior Description
Geometric
Attributes

Geometric attributes are mainly used for
model layout purpose. They define the
two dimensional position of the modeling
element in relation to other elements.
This information is typically used simply
for graphical representation purposes.

User
Attributes

User attributes include parameters and
outputs. Parameters are what engineers
will be manipulating to change the
properties of the modeling element.
Outputs provide exposed features of the
modeling element either for the engineer
to examine (Performance Indicators), or
to be used as inputs to other element
parameters.

Relationships Relationships between modeling elements
is used to define the logic of the
simulation model and flow path of
entities.

Hierarchy The concept of a hierarchy is supported
mainly through the ability of any element
to access its parent�s as well as its
children�s properties.

Simulation Simulation behavior defines the
resources, files, events and entities of a
given element and how each simulation
event is handled.

Statistics Statistical collection is defined at the
modeling element level. Examples of
statistics are resource utilization, queue
lengths, and cycle times.

Planning The planning behavior defines how a
given modeling element transforms its
simulation results into a project plan that
includes a schedule, production and
revenue forecast, resource utilization and
costs.

Graphical
User
Interface

This behavior includes graphical
representation, which determines what the
modeling element looks like to the
engineer. The other aspect of this
behavior is graphical manipulation, which
defines how an engineer can manipulate
geometrical attribute, user attribute, and
relationship information.

Animation This behavior defines the element�s role
in the animation scenario if one is
produced after simulation.

methods are also available to support event cancellation
and resource preemption.

This service is provided through a class called
�CFCSim_ModelingElementInstance�. Examples of the
08

AbouRizk and Mohamed

available methods and properties in this class are shown in
the following table.

Table 2: Sample Methods and Properties for Simulation
Service

Method/Property Description
AddEvent Declares a simulation event that

can be scheduled during
simulation.

AddFile Adds a simulation file. The file
can be declared as stack, queue or
list.

ScheduleEvent Schedule an event for processing
after certain simulation-time units.

CloneEntity Creates a copy of an entity with
all the attributes of the original.

RequestResource Requests a resource and implicitly
queues the requesting entity if the
resource is not available.

The following example illustrates the use of the

�ScheduleEvent� method for scheduling a discrete event.
The method requires three input parameters: 1) a reference
to the entity that will trigger the event, 2) the name of the
simulation event, and 3) the time period after which the
event is scheduled starting from the current time. This
method will mostly be used in the simulation event
handlers which are triggered on initializing a simulation
run (OnSimulationInitializeRun), or processing an event
(OnSimulationProcessEvent). The example utilize the
�ScheduleEvent� method in the �OnSimulationInitialize-
Run� event handler to kick off the simulation events.

Public Sub Example_OnSimulationInitializeRun(ob
as CFCSim_ModelingElementInstance, RunNum as
Integer)
 Dim Customer as CFCSim_Entity
 Set Customer = ob.AddEntity

 Ob.ScheduleEvent Customer, �Customer_Arrive�,
sampler.Expntl(10)

End Sub

The above code first declares a variable of type

CFCSim_Entity to hold on a reference to an entity repre-
senting a customer. The second line utilizes the AddEntity
method to create a new entity, obtain a reference to it, and
assign the reference to the declared variable. The Schedule-
Event method is then used to schedule the first event in the
simulation run which, in this case, represent a customer
arrival. The last parameter of the method is set through a
call to another service in Simphony that enables sampling
random numbers from different types of distribution by
defining the type and parameters of the required distribu-
tion. The sampling in the above example is done from an
exponential distribution with a mean of 10.

19

3.2 Statistical

This service provides support for collecting statistics on
both intrinsic and non-intrinsic types of data. Standard
statistics include average, standard deviation, minimum
and maximum. Statistical collection is done in Simphony
through the concept of a �statistic�. A statistic must be
declared on creating a new instance of an element before
any observation values are collected during simulation. To
declare a new statistic, the developer can use the
�AddStatistic� method as part of the �OnCreate� event
handler of the element. The following code shows example
of possible use of the statistical services.

Public Function Example_OnCreate(ob as
CFCSim_ModelingElementInstance, x as Single, y
as Single) as Boolean
...
ob.AddStatistic �CycleTime�, �Truck Cycle
Time�,False,True
...
End Function

Public Sub Example_OnSimulationProcessEvent(ob
As CFCSim_ModelingElementInstance, MyEvent As
String, Entity As CFCSim_Entity)
...
Select Case MyEvent
Case �CollectStat�
Ob.stat(�CycleTime�).Collect SimTime-
entity(�StartTime�)

...
End Sub

The first part of the above code shows use of the

AddStatistic method in the OnCreate event handler. The
first parameter of the method is a unique string for identi-
fying the statistic. The second is the description that will be
used by Simphony when displaying the results to the user.
The third parameter is to define if the collected observation
should be treated as intrinsic (time of collection will be
considered) or non-intrinsic. The last one is to define if
Simphony should fully track the observations to produce a
graph output for the statistic or not.

The second part of the code shows the collecting of
observation for the CycleTime statistic as part of an event
in the OnSimulationProcessEvnet event handler. The
collection is done by defining the required statistic and
calling the collect method for it while passing the value of
the observation to the collect method. In this case, the
cycle time value is the difference between the current
simulation time (SimTime) and the time when the entity
started its cycle which is held in an entity attribute called
�StartTime�.

The following figure shows the output for a statistic
that is fully tracked.
09

AbouRizk and Mohamed

Figure 2: Output of a Fully Tracked Statistic

3.3 Tracing

The tracing service provides a general-purpose mechanism
for relaying information to the engineer which could
include simulation trace results, error messages, and
integrity errors. Simphony also uses this service internally
to inform the engineer in case a run-time error in detected
in the developer�s code.

The tracing service represents a powerful debugging
tool for both the developer and the user. During develop-
ment, the developer can embed trace messages at key
points to verify the execution sequence of the code. Once
the developed tool is functioning as required, trace mes-
sages can then be embedded to enable the user track the
flow of simulation events in a model to make sure the
model is built properly or to get better understanding of the
interaction between the elements in the model during
simulation.

The developer can produce trace messages by making
a call to the �Trace� method as shown in the following
code.

Tracer.Trace �The message shown to the user�,
�Trace category1�, �Trace category2�, �Trace
category3�

The following figure shows a typical trace message

window after running the simulation.

Figure 3: Trace Messages Window

Time Graph
Histogram

CDF
19

3.4 Animation

Animation service provides the users with extra explanation
and insight of how a simulation model works. The developer
can associate animation screens with one or more of the
modeling elements. After simulation ends, each screen will
display a trail of animated objects that maps the sequence of
events and changes in the model. The developer has the
control of what objects to display, the graphical representa-
tion of them, the required movement or modification in
response to certain events during simulation. A number of
methods and properties are provided through the animation
classes for controlling these animation behaviors.

An example of the use of animation is illustrated in the
following code. The objective in the example is to move an
icon to represent a truck movement over a road.

Public Sub Road_OnSimulationInitializeRun(....)
...
ob.Parent(�Screen�).Reference.addPathLine(ob.I
D & �Path�,ob.ConnectionPoints(�c2�).x,
ob.ConnectionPoints(�c2�).y,
ob.ConnectionPoints(�c2�).RelationsTo(1).dstCo
nnection.x,
ob.ConnectionPoints(�c2�).RelationsTo(1).dstCo
nnection.y)
...
ob.Parent(�Screen�).Reference.addBitmap(ob.ID
& �TruckEmpty�, GetImage(ob,�Truck�& Direction
& �Empty.bmp�))
ob.Parent(�Screen�).Reference.addBitmap(ob.ID
& �TruckLoaded�, GetImage(ob,�Truck�&
Direction & �Loaded.bmp�))
...
End Sub

Public Sub Road_OnSimulationProcessEvent (....)
...
Case �StartTravel�
...
ob.Parent(�Screen�).Reference.pathObj(ob.ID &
�Path�,ob.ID & �TruckEmpty�,ob(�InstNum�))
ob.Parent(�Screen�).Reference.startPath(ob.ID
& �Path�,ob(�InstNum�),SimTime)
...
Case �FinishTravel�
ob.Parent(�Screen�).Reference.endPath(ob.ID &
�Path�,
ob(�InstAssociation�).Collection(CStr(Entity.I
D)), SimTime)
End Sub

The first part of the above code is inserted in the event

handler triggered on initializing the simulation
(OnSimulationInitialize). The code handles the creation of
a new path in the animation screen of the parent element.
The path is created using the connection point coordinates
of the current element in addition to the elements
connected to it. Within the same event handler, a new
animation object is also created to represent the moving
truck. Different bitmap images were chosen to graphically
represent the truck in the empty and loaded situations.
10

AbouRizk and Mohamed

The second part of the code is embedded in the event
handler responsible for processing the simulation events
(OnSimulationProcessEvent). When a �StartTravel� event
is processed, the path is associated with an instance of the
truck animation object and then the �StartPath� method is
used to begin moving the object along the path at a given
simulation time. In the same way, when a �FinishTravel�
event is reached, the �EndPath� method is used to end the
movement of the truck along the animation path.

The following figure shows part of the animation
screen for the previous example.

Figure 4: Animation of Truck Travel/Return Process

4 SIMPHONY TEMPLATES

The services provided by Simphony as a development
environment allows for developing flexible and user-
friendly simulation tools in a relatively short time. These
services gives the developer full control over a wide range
of element behaviors. Although Simphony is intended for
developing SPS tools, its capabilities enabled developing
general-purpose tools with full functionality. Samples of
the developed tools are introduced in the following
sections to highlight some of the features that can be easily
accomplished in a tool developed with Simphony.

4.1 General Purpose Simulation Tools

Two templates were successfully developed in Simphony
that can be used for general-purpose modeling. The first
one is referred to as the �common� template. It provides
basic constructs that can be used to model a system using
process interaction concepts. The common template
features most of the required functions for general purpose
modeling that could be found in stand-alone general-
purpose simulation software. The use of this template
requires the user to have background in simulation
techniques. Many of the modeling elements in the template
can be used in conjunction with elements from other
templates to add certain behaviors to the model.

The template includes elements for handling hierarchi-
cal modeling, entity creation and routing, resources,
statistics, activities, and tracing. The following table briefly
describes the function of some elements in the template.
1911
Table 3: Elements of the Common Template
Element Description
Composite The composite element is used to build

sub-models inside the main model. The
user can create other elements as
children inside a composite element and
link them to higher-level elements
through InPort and OutPort elements.

Conditional
branching

This element enables routing entities
into two different branches based on a
condition associated with the element.

Probabilistic
Branching

This element enables routing entities
into a number of different branches
based on a probability associated with
each branch.

Resource
Handling
Elements

These are a number of elements for
managing resources in the model. They
allow declaring resources and waiting
files, requesting, and releasing of the
declared resource. Multiple or single
resource requests in addition to
prioritized queuing are allowed.

Create
Entities

This element creates new entities with
the number, start time and time intervals
specified by the user and transfer them
out through its output connection point.

Set Entity
Attributes

Assigns values for new or existing
attributes of entities passing through it.

Consolidate The consolidate element helps
managing the number of entities
flowing through it by either
consolidating or cloning them.

Execute This element enables the execution of a
user written code during the simulation
to perform any function that is not
supported by the elements in the
template.

Statistics
Elements

A number of elements that help
declaring and collecting statistics at key
points in the model.

Task This element represents a normal task
that requires duration to perform.

Trace This element enables producing trace
messages at selected points to check the
integrity of the model.

The second general purpose template enables the user

to build models based on the CYCLONE methodology. It
supports the standard CYCLONE elements (i.e. queue,
normal, combi, generate/consolidate) in addition to ele-
ments for supporting hierarchical modeling and proba-
bilistic branching. The hierarchical feature in the templates
allows embedding CYCLONE models in other models
created by different templates.

AbouRizk and Mohamed
The following figure shows the icons of the modeling
elements in the two templates from which the user would
select to create a model.

Figure 5: Icons of the Common and Cyclone Elements

Both templates illustrate the capabilities of Simphony
for developing highly flexible simulation tools that can
accurately model complicated systems. Furthermore, they
validate the effectiveness of Simphony as a developing
environment that reduces the development time by a
remarkable amount.

4.2 Special Purpose Simulation Tools

Special Purpose Simulation is a proven principle that can
lead to the effective transfer of simulation knowledge to the
construction industry. The development of Simphony was
originally motivated by the need for an environment that
tailors to the needs of both novice and advanced simulation
tool developers and users (Hajjar and AbouRizk 1999).

Several SPS templates have been developed in Sim-
phony for modeling different construction processes. Some
of these templates are introduced in the next sections.

4.2.1 Dewatering Template

The dewatering template tackles one of the common
problems in construction work. The need to handle subsur-
face water is always encountered during and after construc-
tion. During construction, the removal of water from work-
ing areas is necessary to provide workers and equipment
with better working conditions. Construction dewatering is
not an easy task to achieve, especially when excavations
extend more than a few feet below groundwater level. In
these cases, open ditches are not a practical solution, and
well-point systems or deep wells are normally used.

One of the main problems associated with construction
dewatering using deep wells and well-point systems is
defining the best possible well configurations that result in
the least pumping effort, and therefore the lowest construc-
tion costs.

The dewatering template was developed to allow for
the graphical modeling and analysis of such operations.
19

Building the dewatering model requires the following
information:

• site coordinates,
• pump wells layouts
• excavation area dimensions and depth,
• original water table level, and
• aquifer properties (i.e. confined or unconfined

aquifers, layers, permeabilities)

Most of the information is entered in a graphical form

that is later on translated into input parameter to the
simulation engine.

After running the simulation, the predicted water table
level can be observed through user defined observation
points, cross-sectional views or 3D graphs.

This template efficiently utilizes the graphical services
provided by Simphony and gives a good example of their
capabilities. Figure 6 shows the model layout and graphical
output of the simulation.

4.2.2 Earth Moving Template

The earth moving template is a special purpose simulation
tool for the design and analysis of earthmoving operations.
It is aimed at providing a flexible and cost effective
method for construction managers interested in optimizing
their earthmoving production.

The template models loading and spreading
operations, plus complex hauling and interfering traffic
patterns. It provides a flexible tool for experimenting with
various alternatives. The planner specifies pertinent
information, such as the road conditions, the amount of
earth to be moved, traffic delays, and the equipment and its
properties to be used. Different scenarios can be built and
examined by using different combinations of trucks,
dozers, and excavators in addition to different work cycles
and hauling roads grades in order to optimize the
utilization of the equipment fleet and the total project time.

This template illustrates some of the features that
could be helpful for the developer and the user. The
hierarchical modeling services are well utilized in the
template to allow modeling the operations in the source
and placement areas through a lower hierarchical level
inside the source and placement elements. A separate
model is constructed at that level to map the preparation/
loading or dumping/spreading operations. A third
hierarchical level is also created to define the preparation
and spreading operations.

Integration between different templates in the same
simulation model is a useful feature that is also presented
in this template. This advanced feature can greatly expand
the modeling capabilities of the templates if handled with
12

AbouRizk and Mohamed

Figure 6: Model Layout and Graphical Output of the Dewatering Template

Figure 7: Hierarchical Modeling and Integration Features in the Earth Moving Template
1913

AbouRizk and Mohamed

care. In the earth moving template, the preparation and
spreading operations are modeled using elements from the
common template to account for the expected delay in
these processes.

Figure 7 shows the hierarchical modeling and inte-
gration between the earth moving and common template.
A third feature of the earth moving template is the link to
external databases to retrieve data for some modeling
elements. The parameters of the hauling trucks (e.g. travel
and return speeds) in the template are retrieved from a
database that maintains the data of the truck fleet of the
contractor. The user has the option to choose a model from
the ones available in the database to define the type for a
truck element. Figure 8 shows the list box that is generated
based on a database query.

Figure 8: Selecting Truck Type from a Database

5 CONCLUSIONS

This paper discussed Simphony as an integrated environ-
ment for developing Special Purpose Simulation Tools.
The services provided by Simphony allow the developer to
easily control a wide range of modeling elements behaviors
which results in building flexible and user-friendly tools in
a relatively short time.

The tool development process is overviewed and
examples of the services available for the developer for
customizing different element behaviors are illustrated.
Samples of the templates developed using Simphony are
also presented to highlight some of the powerful features
that a developer can easily include in a template.

ACKNOWLEDGMENTS

This work was funded by a number of construction com-
panies in Alberta and the Natural Science and Engineering
Research Council of Canada under grant number IRC-
195558/96.

191
REFERENCES

AbouRizk, S., and D. Hajjar. 1998. A framework for

applying simulation in construction. Canadian Journal
of Civil Engineering. 25(3): 604-617.

Hajjar, D., and S. AbouRizk. 1999. Simphony: An
Environment for Building Special Purpose Construc-
tion Simulation Tools. In Proceedings of the 1999
Winter Simulation Conference, ed. Phillip A.
Farrington, Harriet Black Nembhard, David T.
Sturrock, and Gerald W. Evans. 998-1006. Phoenix,
Arizona.

Hajjar, D., Y. Mohamed, and S. AbouRizk. 2000. Creating
Special Purpose Simulation Tools with Simphony. In
Proceedings of Construction Congress VI, ed.,
Kenneth D. Walsh, 87-96. Orlando, Florida.

Simphony Documentation. 2000. Internal Report.
NSERC/Alberta Construction Industry Research
Chair. University of Alberta.

AUTHOR BIOGRAPHIES

SIMAAN ABOURIZK is a Professor in the Department
of Civil Engineering at the University of Alberta. He
received his BSCE and MSCE in Civil Engineering from
Georgia Institute of Technology in 1984 and 1985, respec-
tively. He received his Ph.D. degree from Purdue Univer-
sity in 1990. His research interests focus on the application
of computer methods and simulation techniques to the
management of construction projects. His e-mail address is
<abourizk@civil.ualberta.ca>.

YASSER MOHAMED is a Ph.D. candidate in the depart-
ment of Civil Engineering at the University of Alberta. He
received his BSCE and MSCE in Civil Engineering form
Zagazig University, Egypt, in 1990 and 1996. His research
interests are focused on decision support of construction
management using simulation techniques. His e-mail
address is <yaly@ualberta.ca>.
4

	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

