
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

SIMULATION WITH GPSS/H

Robert C. Crain

Wolverine Software Corporation
7617 Little River Turnpike, Suite 900

Annandale, Virginia 22003-2603, U.S.A.

h
f

a
s

H
i

th
r
n
l

e
r
x

e
g

els
ext
tly

id

es
hich
 a
art
ch
ich

ss
s of

a
 of

 in
,
el
g
n,
e
t the
by
ion
d
e-
ose
uch
on

m

ABSTRACT

GPSS/H is a well-known, traditional simulation tool whose
user base continues to grow despite the presence of ma
“new” trends in simulation technology. In GPSS/H, the
process-interaction world view has been combined wit
many advanced features to make one of the most power
and flexible tools available, capable of handling large and
complicated models with ease, yet still providing
exceptionally high performance.

The following sections provide an overview of
GPSS/H and its process-interaction world view,
discussion of model-building interfaces including tradeoff
associated with graphical modeling environments, and
summary of advanced and recently-added GPSS/
features. Finally, the use of special-purpose simulators
discussed, along with features of GPSS/H which make
very well-suited for use as the engine in such simulators.

1 INTRODUCTION

The widespread success of GPSS/H rests upon both
superiority of its original design and the subsequent yea
of improvement and enhancement. As a simulatio
language, GPSS/H requires some programming-sty
effort, but it does so within an intuitive modeling
framework that can be readily used without extensiv
programming experience. It is equally well suited fo
modeling simple systems and for modeling large, comple
systems.

Although many new simulation tools have been
introduced over the past decade, often they have be
designed for specific classes of applications. In stron
contrast, GPSS/H continues to be one of the most general,
flexible, and powerful simulation environments currently
available. GPSS/H is in use around the globe for modelin
manufacturing, transportation, distribution,
telecommunications, hospitals, computers, logistics
mining, and many other types of queuing systems.
ters,

235
ny

ul

a

s
it

e
s

e

n

g

,

2 PRODUCT OVERVIEW

GPSS/H is a discrete-event simulation language. Mod
are developed with an editor and saved in ordinary t
files. With GPSS/H, the text files are subsequen
compiled directly into memory and executed. Exceptionally
fast compilation and execution encourage rap
prototyping and iterative model development

GPSS/H uses the natural and intuitive process-
interaction approach to modeling. The modeler specifi
the sequence of events, separated by lapses in time, w
describes the manner in which “objects” flow through
system. As a result, a GPSS/H model reads like a flowch
of the system being modeled. This modeling approa
contributes greatly to the ease and speed with wh
simulation models can be built.

After the model has been built, the proce
representation is executed by GPSS/H, and the activitie
“objects” are automatically controlled and monitored.

2.1 GPSS/H Process Representation

An “object” in a GPSS/H model might be a patient,
telephone call, a truck, a data packet, or any other type
discrete entity. The representations of these “objects”
GPSS/H are called transactions. As the model executes
many transactions can be flowing through the mod
simultaneously—just as many “objects” would be movin
through the real-world system being modeled. In additio
multiple transactions can, while flowing through th
model, execute the same GPSS/H model statements a
same instant in simulated time without any intervention
the modeler. The execution of a process-interact
simulation model is thus similar to a multi-threade
computer program. This differs greatly from the singl
threaded, sequential execution of most general-purp
programming languages, and is a good reason why s
languages are usually not good tools for writing simulati
models.

Many simulation projects focus on the use of syste
resources such as people, machines, conveyors, compu

Crain

del,
stem
ess
an’t

s no
ing
in a

ay
sly.
es i
ing
here
ctor.
lel
ally.
ses
may

 are

and
ext

els
 to
 are
ach
 of
ch is
—

er,
 on
licit
ple,
sed

 is
. As
ing

eate
 the
ing

well,
are
.

e

 a

e

te

n

s
,
e

-

as

d

n

e

ke.

f

,

physical space, and so on. In a GPSS/H simulation mo
transactions (“objects”) compete for the use of these sy
resources. As transactions flow through the proc
representation, they automatically queue up when they c
gain control of a necessary resource. The modeler doe
have to specify the transaction’s waiting time or its queu
behavior for this to occur. Hence, the passage of time
GPSS/H model can be represented implicitly, as in the case
of a part waiting for a machine to be free, or explicitly, as in
the case of a part being processed by a machine.

Like most real-world systems, a GPSS/H model m
consist of multiple processes operating simultaneou
Furthermore, each process may affect the other process
the system. For example, two parallel manufactur
processes may converge to a single inspection point w
they are competing for a single resource—the inspe
GPSS/H provides the capability for multiple paral
processes to interact with each other automatic
Transactions (“objects”) may be sent between proces
they may control or share common resources; or they
influence the (global) operation of all processes.

3 GRAPHICAL MODELING — GOOD AND BAD

Often, the power and ease-of-use of a simulation tool
confused with the model-building interface provided by the
tool. That interface may be comprised of icons, menus
data forms, or—as with GPSS/H—it may consist of t
entry, or it may be a combination of the two.

One modeling approach is to try to build mod
visually. Icons are placed on the computer screen
represent system components, links between them
drawn, and then the operating characteristics of e
component are specified by moving through a series
menus and data forms. One advantage of this approa
that even novices can build simple models quickly
although not necessarily accurately.

Building models of complicated systems, howev
requires more than simply placing and connecting icons
the screen. To model many processes, an exp
programming environment must be provided. For exam
the complicated operating logic of a microprocessor-ba
controller often needs a procedural specification—it
simply too cumbersome to represent such logic visually
a result, models of complex (real world) systems built us
the visual approach often require the modeler to cr
substantial amounts of programming code in addition to
visual representation. The creation of such programm
code may mean another steep learning curve, as
depending on how different the tools for producing it
from the tools used to create the visual part of the model
r
in

236
t

n

;

3.1 Developing and Editing Models

Graphical modeling tools can force their users to make th
model fit within a rigid framework bounded by the
available icons, menus and forms. The advantage of such
rigid framework is that it tends to steer even a beginning
modeler through the model-building process. The
disadvantage is that the framework may not be versatil
enough to accurately model complicated systems, so the
modeler may be forced to choose between an inaccura
model and starting over with a new simulation tool. For an
excellent discussion of this situation, see Banks and Gibso
(1997).

Additionally, large visual models can become very
cumbersome to view, edit, and document. Large model
can be comprised of many “screens” of icons and links
many of them with associated programming code reachabl
only by going through multiple levels of clicking.
Editing—or even just browsing—such models forces the
user to navigate through a labyrinth of icons, menus, click
buttons, data fields, and code segments.

3.2 What Defines an Easy-to-Use Simulation Tool?

The presence or absence of a single characteristic—such
a “graphical” user interface—does not determine a tool’s
ease-of-use. Whether a tool is “easy-to-use” is determine
by the combination of general characteristics and specific
features that are used repeatedly when real-world models
are being built. Simulation software should be selected
based on how well it is suited to the detail and complexity
of the specific type of model to be developed.

Moreover, the claim of ease-of-use made for a
simulation tool can mean—among other things—that it is
easy to learn, easy to use repetitively, easy to use whe
modifying models, easy to use when building simple
models, or easy to use when building large, complex
models. Tools that are claimed to be “easy-to-use” often
fall short when modeling complex, real-world systems.

Graphical model building, often touted as a
breakthrough in ease-of-use, springs from trends in th
design of computer interfaces used primarily for word-
processing, spreadsheets, database access, and the li
Although a graphical user interface is well suited for many
kinds of tasks, it is not always practical for developing
simulation models—especially in circum-stances where
programming is necessary to define the operations o
complex processes.

At some point, a graphical environment can present its
user with more barriers than advantages. For example
proponents of graphical modeling techniques frequently
claim shorter model development time, but this can be
because users of graphical tools tend to build simple
models, or models of simpler systems. As was discussed
section 3.1, creating and editing complex models with

Simulation with GPSS/H

n

a
A

n

s
in

n
T
b

n

e

e

C
s

n
e
y

t
u
x
s
d
t
r

IC

t

y
e
,

.
-

y
th
es
s,
or

r
,

f

d
,
d
f
at

s

’s
ed
s
,
l.
l

nd

e

at
graphical tools can require more time than creating a
editing such models in a text-based environment.

4 IMPORTANT FEATURES OF GPSS/H

Several characteristics make Wolverine’s GPSS/H
excellent choice for a general simulation environment.
key feature of GPSS/H is the conceptual flexibility to
model a wide range of different types of systems: a
system that can be described as a process flow, w
objects and resources acting upon each other, can
modeled. This may include people on a mass tran
system, tasks in an office environment, or data flow with
a computer network.

Specification flexibility is also provided within the
language: complex math formulas, expressions, a
constants can be used virtually anywhere in the model.
promote model readability, elements and entities may
specified by names instead of numbers.

Basic simulation output data, such as queuing a
service statistics, are automatically provided each time a
model is run, which greatly aids incremental mod
development. In addition, with very little effort virtually
any of the automatically gathered statistics can be writt
to a file for use with other software.

GPSS/H is available for PCs and SUN SPAR
workstations. On the PC, GPSS/H Professional runs a
true 32-bit application under Windows 3.x, Windows 95
Windows NT, OS/2, or even plain DOS, providing
tremendous speed as well as model size that is limited o
by the computer’s available memory. Running und
Windows, OS/2, and Unix, GPSS/H uses virtual memor
which allows model size to exceed the amount of physic
memory (RAM) installed in the machine.

4.1 GPSS/H File and Screen I/O

The file and screen I/O built into GPSS/H provide a varie
of ways to get data into a model and get results o
GPSS/H can read directly from the keyboard or from te
files, and it can write directly to the screen or to text file
The GETLIST statement and the BGETLIST block rea
integer, character, and double-precision floating-point da
Input data files are free-format (values on each line a
simply separated by blanks), and special actions may
specified for error and end-of-file conditions.

Customized output is generated using the PUTP
statement and the BPUTPIC block. These use a ve
intuitive “picture” type of format specification, which
follows the “what you see is what you get” convention
Special provisions are included to allow easily formatte
tabular output. Character strings can also be manipula
using built-in capabilities. Writing output files using the
comma-separated-value format, for easy input into
spreadsheet, is very straightforward with GPSS/H.
237
d

n

y
ith
be
it

d
o
e

d

l

n

 a
,

ly
r
,

al

y
t.
t
.

a.
e
be

ry

.
d
ed

a

4.2 Scripting Language for Experiment Control

The results from a single run of a simulation are onl
single observations of random variables that may b
subject to wide variations. Careful experimental design
using multiple runs, is essential to accurately predict the
behavior of the model outputs. GPSS/H provides the tools
to build a complete experimental framework.

A complete scripting language is available to
construct experiments and control model execution
Experiments can be automated with DO loops and IF
THEN-ELSE structures. Statistics collection may be totall
or selectively reset, and/or data values assigned, bo
during a model run and before or after each run in a seri
of runs. The experimental specifications and parameter
like any other model data, can be read in from a data file
from the keyboard if desired.

4.3 Statistically Robust Random-Number Streams

The need to provide multiple independent streams of
random numbers for use in different parts of the model (o
in the same parts for different runs) is very important
particularly after a model is largely complete and the
modeler is concentrating on validation and the running o
experiments. The indexed Lehmer random number
generator provided in GPSS/H was designed an
implemented specifically to provide exceptionally simple
straightforward control of the random number streams use
in a model. Modelers can easily specify any number o
streams and guarantee that they will be independent (th
they will not be autocorrelated due to overlap). GPSS/H
also automatically detects any accidental overlap,
providing an extra measure of protection to users.

4.4 Validation and Debugging

The GPSS/H Interactive Debugger conveniently provide
for rapid model development and verification. Simple
debugger commands are used to control a model
execution and to examine its status. Functions are provid
to “step” through the model, to set breakpoints and trap
that interrupt model execution based on multiple criteria
and to return to a previously saved state of the mode
Almost all data values can be examined, including loca
data, global data, transaction attributes, entity statistics, a
array data values.

• The debugger provides a “windowing” mode that
displays source code, model status, and interactiv
user input as the model runs.

• A modeler can interrupt a long-running model at any
time and use the debugging features to make sure th
everything is running correctly before resuming
execution.

Crain

o
u
n

s

-

x
o
e
:

i

te

e

a

n

s

a
x

ia
h
r

a
in

n

s

r

.
t

l

n

ed
• The GPSS/H debugger has almost no effect
execution speed. Because of this, many modelers
the debugger as their everyday run-time environme
for GPSS/H.

5 FEATURES OF GPSS/H

GPSS/H is continually improving and evolving. Numerou
enhancements, under development as of this writing, w
be discussed in the tutorial session. Persons unable
attend may obtain the latest information by contactin
Wolverine Software Corporation.

Some of the more significant additions to the widely
used GPSS/H Professional version have been:

• The BLET Block and the LET Statement can be use
to assign a value to any GPSS/H data item. Unless you
need the rarely used range-type assignments, there is
no longer any reason to use the ASSIGN,
SAVEVALUE, and MSAVEVALUE Blocks. The
BLET Block provides a single, straightforward synta
for assigning values to all GPSS/H data items. F
example, using BLET to assign a value of 1 to th
Transaction parameter named ALEX is quite intuitive

BLET PF(ALEX)=1

Using indirect addressing, such as assigning a value
the Parameter specified by the number given
PF(ALEX), is similarly intuitive, yet is not likely to be
written by accident:

BLET PF(PF(ALEX))=1

• GPSS/H supports convenient built-in random-varia
generators for 26 statistical distributions.

• GPSS/H Professional is bundled with ExpertFit™, th
highly-regarded distribution-fitting software from
Averill M. Law and Associates.

• GPSS/H Professional supports user-written extern
routines in both C and FORTRAN. Although it is
rarely necessary to go “outside” GPSS/H whe
developing a model, it can be helpful in specia
situations. For example, it might be desirable to u
scheduling software from the real system as
component of the simulation model. Similarly, a
modeler might want to use pre-existing computation
code, or need to write extremely comple
computational routines that can become somewh
cumbersome as GPSS/H Blocks. Other spec
situations might involve the need to interface wit
non-ASCII data files, or to develop a specialized use
interface.

• CHECKPOINT and RESTORE statements allow
model to save its state at a predetermined point dur
execution, then make repeated runs using that state
238
n
se
t

ill
to

g

d

r

to
n

l

l
e
a

l

at
l

-

g
as

the starting point. In many cases, CHECKPOINT and
RESTORE can be much easier to use than the
traditional READ and SAVE statements.

• The SYSCALL statement and the BSYSCALL Block,
which take an operating system command line as an
operand, allow a running GPSS/H model to shell out
to the operating system to perform the specified
command. SYSCALL and BSYSCALL are especially
useful when using existing programs to perform data
analysis during model execution or between
simulation runs. The models can communicate with
the external programs through data files. The ability to
shell out to the host operating system has also bee
implemented in the GPSS/H Interactive Debugger. In
order to use this feature, one merely types a “$”
followed by the operating system command at the
debugger command line prompt.

• The operations that can be performed on Transaction
in a User Chain were extended. The SCANUCH and
ALTERUCH Blocks allow examining and changing
the Parameters of such Transactions without having to
UNLINK and reLINK them. They operate on User
Chains in exactly the same way as SCAN and ALTER
operate on Groups.

• Floating-point Parameters can be examined and/o
modified during operations on both User Chains and
Groups.

6 BUILDING A SIMULATOR USING GPSS/H

Earlier in this paper, the capabilities of visual-based
modeling tools were contrasted with those of languages
Regardless of which approach is used, the modeler mus
still build from scratch a model that represents the physica
system of interest. Modeling complex systems correctly
requires intimate knowledge of both the simulation
software and the system under study. (Schriber and
Brunner 1997) However, not everyone who can benefit
from using simulation has the time or the training
necessary to build simulation models.

As a result, a third type of modeling-tool, the special-
purpose simulator, has emerged as a way of providing
simulation capabilities to users with little or no modeling
experience. Special-purpose simulators are most ofte
developed under circumstances where:

• a single model development effort can benefit multiple
users

• modeling expertise can only be obtained from indirect
sources such as internal or external consultants

In these cases, it makes sense to have an experienc
simulationist develop the model, freeing the end-user from
learning modeling and simulation-software skills.

Simulation with GPSS/H

d
i

r
t
o

a
 o

i
u

r
e

h

.
e

a

n

s
n
u
t

s

s
y

o
t

ts
r
at
er

ter
hin
lue,
g

tes
n

e
t a
is
l

ry
me
r.
l

a
.

The special-purpose simulator is thus a custom-bu
analysis tool designed by an experienced simulation-mo
builder. At its heart is a data-driven model of a specif
system or set of similar systems. The simulator provides
user with a method to easily modify model paramete
define experiments, run tests, and get results. A simula
is usually comprised of a data-entry front end, a simulati
engine, and an output browser. The simulation engine ru
a parameterized model which accepts user-specified dat
execution time. Combining these tools brings the power
simulation analysis into the hands of the non-simulationis

6.1 Data-Entry Front End

The front end is the means by which the user of a spec
purpose simulator modifies the run parameters witho
changing the underlying model. This may take seve
forms, the most basic and rarely used of which involv
manually editing a text file. In another approach, the mod
itself prompts the user for input from the keyboard as t
model executes. Still other designs require modifying da
by using an external spreadsheet or database program
matter which approach is used, the purpose of the front
is to conveniently produce a data file which can be used
the simulation model as it executes.

A more advanced approach integrates a customiz
front-end data-entry program, a simulation engine, and
output browser under a single outer shell (Figure 1).
Typically created using a general-purpose programmi
language or a tool such as Visual Basic, the shell may
menu-driven. Data-entry “windows” and dialog boxe
guide the user through the process of specifyi
parameters, running the model, and viewing the outp
The shell may also provide built-in help facilities and da
“range-checking” (e.g., verifying that all operation times
are non-negative before executing).

6.2 Simulation Model

The most important component of the special-purpo
simulator is the underlying model. Since the end user
generally prevented from modifying the model, thi
component determines the maximum flexibility offered b
the simulator. It must be generic enough to accept a br
range of inputs, and it must be updated periodically
ensure that the model remains valid.
the
’s
e

ne
t,

239
ilt
el
c
its
s,
or
n
ns
 at
f

t.

al-
t

al
s
el
e
ta
No
nd
by

ed
n

g
be

g
t.

a

e
is

ad
o

Simulation Engine
Simulation Model

Output Browser

Menu-Driven
Front End

(Enter model parameters
and write data file)

(Run parameterized model

(Format and view results)

S
H
E
L
L

Control returns to "shell" after each component finishes executing

and read data file)

Output File

Data File

Programs Text FilesBatch File
Executable

Figure 1: Components of a Special Purpose Simulator

A static simulation model can be produced and i
design frozen when the simulator is initially created, o
model code can be generated “on-the-fly” every time th
the model parameters are modified by a user. In eith
case, user input is not limited to operating-parame
values—a user can also alter logic embedded deeply wit
the model. For example, based on a user-specified va
the model could select one of three different order-pickin
algorithms that have been pre-coded into the model.

6.3 Simulation Engine

The simulation engine runs the model and genera
output. There are several features to look for whe
selecting the engine.

Most importantly, the language used for the engin
must be flexible enough to handle the demands tha
generalized model places on the software. Flexibility
crucial in the areas of file input, file output, and contro
logic within the model. Execution speed is also a prima
concern. The faster a model executes, the better—ti
executing a model is often down-time for the use
GPSS/H’s speed and built-in flexibility make it the idea
simulation engine for a special-purpose simulator.

An excellent example of the use of GPSS/H as
simulation engine is given in Coughlan and Nolan (1995)

6.4 Output Browser

The output browser displays the data generated by
model in an easy-to-understand form. If the simulator
user has limited experience in simulation modeling, th
standard-style statistical reports provided by the engi
may be totally unsuitable. Custom-formatted outpu
including summary statistics, should always be used to

Crain

tp

t
e
e
ic
o

s

v
e

ti
e

i

h
w
H

h

c
y
t

e
l

r

h
d

ig
h

,

e

,

f

f

present simulator results. Statistical analysis of the ou
can be performed directly by the shell program, by
spreadsheet or similar program, or by a specializ
statistical software product.

Animation is yet another form of simulation outpu
Animating a generalized model can sometimes pres
obstacles. Accounting for variations in resource numb
and capacities, flow and routing-patterns, and phys
layout dimensions makes animating a generic model m
difficult than animating a specific model. However, a ba
animation helps confirm model validity to the non
simulationist. High quality animations can be generated
coupling a GPSS/H model with Proof Animation™,
general-purpose animation tool.

6.5 Run-Time Versions Provide an Economical
Simulation Engine

A simulator is generally developed for a single applicatio
where it is intended to be used by many people. Howe
each user must have a copy of the simulation softwar
order to execute the model. For a simulator used by doz
or even hundreds of users, the cost of the simula
software may render a project too expensive. Wolverin
Run-time GPSS/H offers a solution to this problem.

Run-time GPSS/H is identical to Wolverine’s 32-b
GPSS/H Professional, except that it can only run mod
which previously have been specially compiled with t
regular Professional version. The run-time version allo
economical distribution of high-performance GPSS/
based simulators.

Security is another important feature provided by t
run-time version. Since only pre-compiled models can be
run, the end user cannot view or edit the model “sour
code. The user has access only to the data files used b
front-end and the output browser; hence, confiden
models can be safely distributed. Even further security can
be obtained by producing special “project-specific” pr
compiled models that can only be run by a specia
designated group of users.

SUMMARY

GPSS/H has a strong history of success in both comme
and academic environments. The product continues
evolve in functionality and to grow in use. Althoug
GPSS/H uses a more traditional text-based mo
definition, it continues to forge a reputation for th
robustness, modeling flexibility, ease-of-use and very h
performance that experienced modelers demand for t
projects.
n

24
ut
a

ed

.
nt
rs
al
re

ic
-
by
a

n,
er,
 in
ens
on
’s

t
els
e
s
-

e

e”
 the

ial

-
ly

cial
to

el
e
h
eir

REFERENCES

Banks, J. 1991. Selecting simulation software. In
Proceedings of the 1991 Winter Simulation Conference
ed. B.L. Nelson, W.D. Kelton, and G.M. Clark, 15-20.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Banks, J, J.S. Carson II, and J.N. Sy. 1996. Getting started
with GPSS/H. 2d ed. Annandale, Virginia: Wolverine
Software Corporation.

Banks, J. and R. Gibson. 1997. Simulation modeling: som
programming required. IIE Solutions February 1997:
26-31.

Coughlan, K.L., and Paul J. Nolan. 1995. Developing
special purpose simulators under Microsoft Windows.
In Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos, K. Kang, W.R.
Lilegdon, and D. Goldsman, 969-976. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers.

Henriksen, J.O., and R.C. Crain. 1998. GPSS/H reference
manual. 4th ed. Annandale, Virginia: Wolverine
Software Corporation.

Law, A.M., and W.D. Kelton. 1991. Simulation modeling
and analysis. 2d Ed. New York: McGraw-Hill Book
Company.

Schriber, T.J. 1991. An introduction to simulation using
GPSS/H. New York: John Wiley & Sons.

Schriber, T.J., and D.T. Brunner 1997. Inside simulation
software: how it works and why it matters. In
Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradottir, K.J. Healy, D.H. Withers, and B.L.
Nelson, 14-22. Piscataway, New Jersey: Institute o
Electrical and Electronics Engineers.

Smith, D.S., D.T. Brunner, and R.C. Crain. 1992. Building a
simulator with GPSS/H. In Proceedings of the 1992
Winter Simulation Conference, ed. J.J. Swain, D.
Goldsman, R.C. Crain, and J.R. Wilson. 357-360.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Wolverine Software Corporation. 1996. Using Proof
Animation. 2d ed. Annandale, Virginia: Wolverine
Software Corporation.

AUTHOR BIOGRAPHY

ROBERT C. CRAIN joined Wolverine Software
Corporation in 1981. He received a B.S. in Political
Science from Arizona State University in 1971, and an
M.A. in Political Science from The Ohio State University
in 1975. Among his Wolverine responsibilities is that of
chief developer for PC and workstation implementations o
GPSS/H. Mr. Crain is a Member of IEEE/CS and ACM.
He served as Business Chair of the 1986 Winter Simulatio
Conference and General Chair of the Twenty-Fifth
Anniversary Winter Simulation Conference in 1992.
0

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

