TECHNICAL NOTE FOR SIMSCRIPT USERS

W. V. Neisius, B. D. Katz, and D. B. Townsend
TREW Systems Group
Redondo Beach, California

SIMSCRIPT is a very powerful and versa-
tile language, however those who have used it
will probably agree that its flexibility creates
problems in learning to use it properly--at
least, that was our experience. The purpose of
this paper is to present our experiences and to
share some of the things we have learned.

This paper will be divided into three
sections:

Special Techniques

SIMSCRIPT vs SIMSCRIPT I.5
° Compuber Comparisons

SPECTAT, TECHNTQUES

Events vs Activities. An activity has a
starting time and a duration. In Simscript it is
necessary to use separate event notices for the
beginning and end of an activity. Beginning
Simscript programmers frequently, when entering
the routine representing the beginning of an
activity (BEGIN) will-

1. Create an event notice (END) to call
the routine for the end of the activity, .
Transfer attributes from BEGIN to

2.
END,
3. Destroy BEGIN,
4. CAUSE END AT---etc.

The first three steps can be omitted by
the single statement:

CAUSE END CALIED BEGIN AT--—-etc.,

This technique can also be used for the
beginning of the next activity (NEXT) by

CAUSE NEXT CALIED END AT~---etc.

Subsecripting Temporary Attributes.
Sometimes it is useful to be able to treat the
attribute of a temporary entity as a single
dimensioned variable in order to index over
several of the attributes. This can be accom~-
plished by writing ATT(TELVHK*I) where ATT is
the name of the attribute, TELV is the Temporary
Entity Local Variable name, I takes on the value
from O to a maximm of 7, and K is a constant
dependent upon the computer and Simscript
version.

Thus K = -1 for 7094 Simseript I,
K = +1 for 7094 Simscript I.5 and
K = 48 for 360 Simscript I.5.

Another procedure, which has been used,
is to let the temporary entity own a set of

45

temporary entities and index over the members of
the seb.

Automatic Max Time by System. One of
our frustrating early experiences was the rumning

of a long job, of indeterminate duration, only to
be maxtimed just before the printing of our final
summary reports. On our particular system, we
were able to do two things. First, we inserted
the address of a 'wrap-up'" routine at the Max
Time Exit location, and second we read the system
clock and printed elapsed time on the extreme
right of our paper at various program check
points. This later gave us an indication of
those portions of the program where we could
efficiently spend our time in program speed-up.

Error Stops. When Simscript detects an
error, during execution, a cryptic remark is
printed and execution is terminated. Sometimes
the only way to btrack down the error is to rerun
the program with a sprinkling of suitable '"trace'
gtatements. Our approach has been to introduce a
new routine with the name EXXIT which deletes the
existing routine and calls for a dump and any
other print outs which might be useful.

Besides adding dumps, other error pro-
cedures have been changed. For example the
ncomputed go to out of range! error was modified
to preserve the location of where the error
occurred.

Initial Conditions Data Deck Problems.
Simscript reads each Inmitialization Card until an
error is found and then stops. .Too often, there
are multiple errors in the deck which are
uncovered one by one. Aside from the obvious
solution of not making mistakes there are a
number of approaches. For example, the TRANSIM
program (written in Simscript by UCLA) uses a
special IBM 1401 program to analyze the
Initialization Deck according to the special
TRANSIM requirements, This is usually very
efficient in flagging multiple errors in what
is usually a very large and complex deck. There
are other approaches which are also useful.
There are essentially two types. The first is to
decide upon certain maximum array sizes and zero
everything out. Then use an Exogenous Event to
read in the Initial Conditioms. By printing a
card image of each card read, we have a record
of our initial conditions, This has the further
advantage of permitting the attributes, associat-
ed with a given permsnent entity, to be read in
as a group and then distributed over all of thé
appropriate tables.

Some versions of Simscript provide for
printing a duplicate of the Initializatiocn Deck.
Tt has been onr approach to use a series of



reports to consolidate the Initial Conditions as
part of the documentation of the particular run
and for verification,

SIMSCRIPT vs SIMSCRIPT I.5

The following comments relate to
Simscript on the IBM 7094 except where noted.

Deck Names. One important difference
between the two Simseript versions concerns the
two compiled binary decks. In the original
Simscript (hereafter referred to as I), a separ—
ate binary deck is created for each routine,
report, event, definition, etec., and, in addition
a complete SYSTEM deck is provided. In 1.5,
binary decks are punched for all definitions, but
all other routines are lumped together into one
deck in standard IBJOB fashion. No SYSTEM deck
is punched. In order to modify a routine, it is
necessary to compile it with a new deck name.
When running, the first routine encountered will
be used, and the same routine in other decks will
be deleted. This procedure sounds simple enough,
but unfortunately led to many problems. Although
each problem is minor, the sum total leads to the
conclusion that perhaps the old method was
better.

Deck Size. You would think that since
I.5 omits the SYSTEM deck, the compiled binary
deck would be smaller. This is not so., A pre-
vious I program was converted to I.5 with the
following results. Deck sizes are given in

inches.
Source
Program I .5
SYSTEM Deck 0.0 1.8 0.0
Compiled Definitions .8 1.7 L.8
Compiled Programs 6.6 3.5 6.1
TOTAL 7.k 7.0 10.9

The initialization and data cards now
make the I.5 program a "two-box!" program! (Most
of this increase is due to standard IBJOB control
cards.) Furthermore, as individual routines are
recompiled, the total deck size increases unless
all programs within a given deck are also
recompiled.

Suppose you decide to divide your
original source program into many small decks!
Then you must include the definition deck in each
deck. This is not mentioned in the documenta-
tion. In the above program we first decided not
to duplicate the definitions, and compile all
source programs into one big deck--but that did
not work--we exceeded the maximum size for a
single deck and ran out of Control Dictionary
space.

Finally, we got the program compiled
into three decks and then we ran into our next
problem,

46

Hollerith Qutput. I.5 offers the con~-
venience of simple write statements containing
Hollerith outputs. Instead of always using
reports, it is possible to output simple one-~line
statements, But here is the problem. Assume a
deck contains a number of routines and each has
Hollerith output. When compiling the deck, I.5
stores all Hollerith data for all routines at the
end of the deck.

If later one of the routines is recom-—
piled and deleted from the deck, then the remain-
ing routines ahead of that routine will now lose
their pointers to their stored Hollerith and will
print out garbage.

The net result is that in order to pre-
serve the output, it may be necessary to recom-
pile routines containing Hollerith even though
they are not modified.

Memory Requirements. Another problem
arose when converting a fairly large Simscript I

program. This program had about 8K of memory
left for creating Temporary Entities and Event
Notices, not counting the memory released by the
Initializing routine. The I.5 version was about
500 words short in storing permanent arrays, thus
the I.5 program required about 40% more memory on

the 7094. (This increase is made up of the
following items:

Routine Words

Simscript System 1200

Library Routine and Buffers 3800

System Resident 1400

6400

In addition, reports require about 1/3 more
memory. To offset this, however, I.5 releases
1100 more words for temporary storage than
Simscript I).

Miscellaneous Comments. In our experi-
ence with I.5, CACI has been very efficient in
issuing modifications and responding to the few
bugs we have uncovered. There is little point in
discussing problems which no longer exist, except
one of them caused so much trouble, it deserves
to be mentioned. This is related to "N'Attribute
Name", We first encountered this in the CDC 3600
Simscript I.5 when we found that this was not
automatically defined, One part of the CDC
manual stated that it was defined, while another
part described the proper procedure for programm=—
ing in its absence. When we first used the CACI
version of I.5 for the 7094, we found that it was
okay for a fixed point ragged table but not a
floating point ragged table, We attempted to
program around this by using the same method as
used for the CDC version., Unfortunately, this
fix does not work for a "packed!" table and since
this was a repetition statement in a report
generator, we got over 2000 pages of paper with
nothing but a title and a page number before
being--mercifully--max timed! The moral of this



is that those using nen-maintained versions of
I.5 (perhaps the SHARE version) should watch for
this bug.

COMPUTER CCOMPARTSONS

On the IBM 7094 we have run Simscript I
and Simscript I.5. In addition, Simscript runs
have been made on the IEM 360, the CDC 3600 and
6500, and the UNIVAC 1108, It has become
apparent that certain factors, other than basic
machine speed, have a major influence upon run-
ning time. The most important factor appears to
be the operating system; second, the particular
Simscript version; and finally, the ratio of
input/output to actual computing and the total
length of the job. A few examples will illus~-
trate some of these points. Our original IEM
7094 Simscript I.5 was combined into a IBSYS
system tape not compatible with our normal system,
Tape searching for Simscript routines and return
to IBSYS introduced a fixed overhead of almost
two minutes per run. This was true, even when
running a previously compiled job since the
Simscript system routines are on the tape and not
part of the input deck, as in Simseript I. By
editing this tape, the overhead was reduced to
about 1.4 minutes. By contrast, on the CDC 3600,
since Simscript was on the disc as part of the
operating system, typical load times were 15 to
20 seconds. A second example relates to our
experiences with the IBM 360-65. We understand
that Simscript I.5 can be reconfigured for
various memory sizes. The available memory, on
our 360, is about 10 X bytes short of optimum and
a. substantial penalty is imposed in compiling.

A simple SIMSCRIPT program was run as a
baseline problem on a number of computers. The
following table lists the results in seconds.

IBM IBM UNIVAC CDC
7094-15 360 1108 6500
1. Setup & Source
Deck Copy 80 8 1 0
2. Compile and
Assemble 33 213 29 56
3. Load and Execute _15 10 _3 _3
TOTAL SECONDS 128 291 46 59
L4, Time to run
compiled program
(1+3) in seconds 95 78 17 3

This table, based upon only one simple
case, must be read with caution. However, some
general observations can be made. The major
penalty for the 7094 is Ttem 1, modifications in
operating system could greatly improve this time.
The inefficiency of the IRM 360 version is due
to non-optimum memory size, however, we do not
understand how this could make Ttem 3 so large.

47

The major time penalty for the CDC 6500 is assembly
time.

SUMMARY

A paper such as this, presenting a
collection of difficulties, is apt to discourage
potential users of Simscript and give the impres-
sion that Simscript is not a good language. On
the contrary, we are enthusiastic supporters of
Simseript and believe that no avallable language
can offer such versatility, ease of use, and
rapid response for certain classes of problems.
It is hoped that the presentation of this paper
will encourage other Simscript users to share
their experiences.



