MODELLING AND SCHEDULING OF COMPUTER PROGRAMS
FOR PARALLEL PROCESSING SYSTEMS +

J. L. Baer¥ and E. C. Russell¥

Computer programs which involve large amounts
of computation time are targets for analysis to
determine two factors; (1) the portions of the
program which are most time-consuming, and (2) the
effect upon solutioﬁ time of multiprocessor sys-
tems [1].

In our automatic modelling system, analysis
begins with a working source program written in a
language such as FORTRAN. From this source pro-
gram a graphical representation is pfepared. The
initial graph represents the program just as it
might' be processed on a single processor. In this
model the flow of. control, as explicitly stated by
the programmer, is separated from the flow impli-
cit in the language. Data-dependency is also re-
corded.

From this initial model, a 'parallel' graph
is constructed which preservés the computational
determinancy [5] of the program. This graph is
prepared by examining the sequentiality imposed
by the language and by the nature of cycles
(loops). Whenever possible such sequentiality is
eliminated thus yielding a highly parallel state-
ment of the program [4].

Figure 1 illustrates the.graph-model of pro-
grams prepared by the process. In this particular
example individual vertices represent FORTRAN
statements. The arcs which connect the vertices
represent control-flow, either; explicit or data-
dependent. TFor multiple out-bfanching or in-
branching, logic is specified.

Each vertei has either conjunctive ("AND")
or disjunctive ("Exclusive OR") logic associated

with its input and output.

*University of California at Los Angeles
Department of Engineering

+This work was sponsored by the Office of Naval
Research, the U.5. Atomic Energy Commission, and
the Advanced Research Project Project Agency.
Reproduction in whole or in part is permitted for
any purpose of the U.S. Government.

278

In order to prepare for an evaluation of the
execution of such a program, several measurements
are obtained. Since we assume a working sequen-
tial program as our source, we can make measure-
ments on the execution of that program on a single
processor [2] to aid in evaluating the effect of
multiprocessors. Measurements of particular value
are the probabilities of executing each portion of
the program and the number of iterations in each
cycle. These can be measured as a single para-
meter, the frequency of execution of each portion
of the program. Another measurement of signifi-
cance is the expected execution time of each por-
tion of the program. This is obtained by tallying
the instructions actually generated‘by a FORTRAN
compiler and then introducing the hardware timing
considerations at the machine instruction level.

After these preliminary measurements are ob-
tained, two paths of investigation may be pursued.
First, the execution of the program on a single
processor is evaluated by determining which por-
tions of the program constitute the major time
delays. BSecond, the effect of multiprocessing may
be evaluated by a "one-shot” assignment and se-
quencing process. The overall process is depicted
in Figure 2.

The one-shot scheduling algorithm works on an
acyclic graph obtained by removing all feedback
ares (e.g. the arc gwg,ws) in Figure 1) from the
graph model. In order to. have a temporally equiv-
alent structure, the time tJ!_ associated with a
vertex LAY is multiplied by its activity ass that
is the expected number of times that wi will be
executed after it has been reached for the first
time, giving a time attribute ti. Now a weight
pit; (where »; is the probability of ever reach-
ing wi) is associated with each vertex Wi {note
that pia. is the measurable frequenc¢y noted
We say that:

~ A vertex is candidate for scheduling if all of

above).

its immediate predecessors have been scheduled.

~ A machine Pi is available if its associated
clock Ci has value O.

- All candidates are in a gqueue, ranked by their
urgency numbers.

-~ When a machine is not available, it means that
there is at least one vertex running on it. The
set of all vertices currently running on a mach-

ine Pi forms the set of temporarily assigned

vertices on Pi'
The following scheduling rules are used when

Pi becomes available and the queue is not empty:

10

~

1)

2)
3)
L)

End of the scheduling process. TIME gives an
(optimistic) estimate of the mean path length
of the process.

Urgency: when a vertex joins the queue, it is
ranked according to its urgency number. The
following policies were tested:

The vertices are placed in the gueue in the
order they arrive: 'FIFO".

Largest weight first : "L.WJF.'.

Smallest weight first : "S.W.F.'

Largest number of immediate successors first :

Scheduling rule # 1: Select the first candidate

in the queue and temporarily assign it to Pi.

Scheduling rtle # 2: Pind the first candidate in

queue, if any, which is mutually exclusive with

all temporarily assigned vertices and repeat the

process until there is no success.

The step by step algorithm is then as fol-

lows:

1)

2)

3)

L)

Initialization: all machines Pi are available
(Ci = 0). TIME = 0.
Initiel vertex w, temporarily assigned to P

1 1
and set C, = P.t

If any Cil# 0 %hin let T = m%n(ci) for C, #0,
else T = 0. All Pi such that Ci =0 or Ci =T
become available. TIME = TIME + T. Ci = max
(Ci - T ,0).

Assign and sequence all temporarily assigned
vertices on the available machines. Let W1l be

the set of those scheduled vertices at this

step.

5) If all vertices have been scheduled go to step
10.

6) Determine the set of new candidates from the
immediate successors of the elements of Wl.
Let W2 be their set.

T) If W2 = ¢ go to step 3 else merge the elements
of W2 in the queue.

8) If there is no machine available or the queue
is empty, go to step 3.

9) Let the first machine available be Pi. Apply

scheduling rules #1 and #2 until the latter
fails; Ci =Z Pjtj vhere vy is a vertex

temporarily assigned to Pi' Go to step 3.

'IANTE'.

5) Largest number of successors first : 'NANTE'.

6

~

The vertex such that u(i) = Pyt * z Pjtj is
maximum is nlaced first (where w, is an imme—
diate successor of wi) : 'GLOBALL'

T} The vertex such that u(i) = (max(uj) + piti)
is maximum is placed first (where the u(i) are
computed in starting by the terminal vertex)
'GLOBAL2'.

Some variations such as vertices preassigned
to particular vprocessors are also embedded in the
algorithm. Extensions to non-homogeneous parallel
processors could be made by introducing a vector
time attribute instead of a scalar one. Results
of exveriments on example graphs dravn from [3]
are shown in Figures 3, 4, 5. The path lengths
are normalized to ffggi , Vhere PLuni is the mean

NPROC
path length on one processor (namely PL = I

uni
piti for all i) [3] and NPROC is the number of

~machines for which the scheduling is performed.

The ordinate called DEGRADATIONS is equal to

PL - PLuni

NPROC
—_—<x
PLuni

NPROC

100.

The DYNAM curves correspond to a dynamic schedul-

ing on sampled paths. As can be seen from the

examples: .

- The GLOBALL (and GLOBAL2) urgencies always be-
have best in 'a priori' scheduling.

- In general a pure dynamic scheduling is not as

good as an 'a priori' scheduling with appropri-

ate urgencies. (The excepbion of Fig. 5 is due

"to a very symmetric graph).

REFERENCES

1. Martin,D.F. and G.Estrin. "Experiments on Mod-
els of computations and systems". Transactions
of IEEE vol. EC-16 no. 1, pp. 59-69, Feb.
1967.

2. Estrin,G. et al "SNUPER Computer. A Computer
Instrumentation Automaton”. Proceedings of
the SJCC, pp. 6UT-656, 1967.

3. Martin,D.F. "The automatic assignment and
sequencing of computations on parallel pro-
cessor systems." Ph.D. in Engineering, UCIA,
Jan. 1966.

4. Bernstein,A.J. "Analysis of programs for
parallel processing " IEEE Transactions in
Electronic Computers, vol. EC«15, mno. 5,
pp. T57-T67, Oct. 1966.

5. Karp,R.M. and R.E.Miller "Properties of a
model for parallel computations: determinancy,
termination queueing.” SIAM Journal on Applied
Mathematics, Vol. 14, no. 6, pp. 1390-1k11,
Nov. 1966. .

1 SUBROUTINE CALC (A, H)
2 B=A+1.
3 C=B+1.
4 D=B+2,
10 G=D+3.
5 IF(C)6,6,7
6 E=C+2.
GO TO S
7 E+D+1,
8 F=E+1.
9 IF(F)S5,511

11 H=G-F+1.
12 RETURN
END

* AND logic
+ OR Logic

FORTRAN PROGRAM AND "PARALLEL'" GRAPH REPRESENTATION
FIGURE 1

280

FORTRAN
PROGRAM

SEQUENTIAL INSTRUMENTATION TIMING
GRAPH MEASUREMENTS ANALYSIS
PARALLEL
GRAPH

CYCLIC~ACYCLIC
TRANSFORMATION

ONE-SHOT
SCHEDULING
PROCESS

OVERALL MODELING AND SCHEDULING PROCESS

FIGURE 2
30 — et DYNAM
®csase LW.F
drm=et NANTE
O=+~0 GLOBAL |
25 |-
20
-
=4
[TY)
&
€ 51
g
2
o
=3
2 10+
@
o
1l
o
.’ -
5| o
..
fh
./
oldad? |

EXAMPLE GRAPH NO. 1 (32 VERTICES)
SUBROUTINE OF A NUMERICAL WEATHER PREDICTION PROGRAM

FIGURE 3

281

60 —

+e——+ DYNAM
Qeeee® L WF
4===+ NANTE
s0 b O=~+=0 GLOBAL
40 |-
30 |—

DEGRADATION { PERCENT)

v
o Laeether"! LW
| 2 3 4 S 6 7 8 9 10
NPROC

EXAMPLE OF GRAPH NO. 2 (147 VERTICES)
SUBROUTINE OF A NUMERICAL WEATHER PREDICTION PROGRAM

FIGURE 4

70 — ﬁ
i +e—t DYNAM
i LW.F
0===0< NANTE
60 [GLOBAL 1
50 —
=
2
]
&
w 40—
L
2
(=]
g
S 30—
o
o]
w
o
20— ‘"Q-__.\
\+\+:.+___.
10 —
B V0 T T N T N O B

NPROC .

EXAMPLE GRAPH NO. 3 (223 VERTICES)
X-RAY CRYSTOLLOGRAPHY PROGRAM

FIGURE §

