ПРОБЛЕМЫ И ТЕХНИКА МОДЕЛИРОВАНИЯ ФРАКТАЛЬНЫХ ОЧЕРЕДЕЙ¹ В.Н. Задорожный (Омск), О.И. Кутузов (Санкт-Петербург)

Введение

Фрактальная природа сетевого трафика, осознанная и изучаемая научным сообществом с 1993 г. [1], привела к необходимости создания новых методов анализа и проектирования сетей связи. Фрактальный трафик описывается новыми формализмами – «самоподобными» случайными процессами, долговременными зависимостями (ДВЗ) и распределениями с тяжелыми хвостами (РТХ) [2]. Создаются новые методы идентификации сетевого трафика; особое внимание уделяется анализу очередей сообщений, поскольку при фрактальном трафике затраты на их буферизацию резко возрастают [1–4].

В статье рассматриваются проблемы имитационного моделирования (ИМ) очередей, обусловленные фрактальной природой трафика. В качестве базовых формализмов используются фрактальные системы с очередями (FQS), определяемые следующими положениями. На вход FQS поступает рекуррентный поток заявок. Интервалы τ_i их поступления описываются функцией распределения (ф.р.) A(t). Время x_i обслуживания описывается ф.р. B(t). Хотя бы одна из ф.р. A(t), B(t) имеет бесконечную дисперсию и асимптотически степенной хвост (т.е. задает *фрактальную* случайную величину (с.в.) [5]). Для хранения поступающих заявок имеется буфер размером $m \leq \infty$. Заявка, поступившая, тогда когда все каналы и все места в буфере заняты, теряется (получает отказ).

Задачи исследования фрактальных очередей

Одной из основных задач исследования FQS является определение вероятности P отказа при заданном размере буфера m (прямая постановка задачи) или определение наименьшего m, обеспечивающего заданную малую вероятность P отказа (обратная постановка). При $m = \infty$ интерес представляет определение стационарной средней длины очереди L. Далее рассматриваются FQS с конечными математическими ожиданиями (м.о.) $\overline{\tau}$, \overline{x} с.в. $\tau \in A(t)$, $x \in B(t)$ и с коэффициентом загрузки $\rho = \overline{x}/(n\overline{\tau}) < 1$ (n – число каналов). Типичные представители FQS – это системы M|Pa|n|m, Pa|M|n|m и Pa|Pa|n|m (в обозначениях Кендалла), где Pa – распределение Парето (РП), имеющее ф.р.:

$$F(t) = 1 - (K/t)^{\alpha}, \qquad t \ge K, \quad K > 0, \, \alpha > 0, \tag{1}$$

далее обозначаемую в виде $Pa(K; \alpha)$. Конечное м.о. $\alpha K/(\alpha - 1)$ РП имеет при $\alpha > 1$, бесконечную дисперсию – при $\alpha \le 2$. Поэтому у рассматриваемых FQS ф.р. A(t) и/или B(t) есть РП с параметром $1 < \alpha \le 2$. Чем меньше α , тем «тяжелее» хвост РП. Изменяя при фиксированном α масштабный параметр K, можно получать любое требуемое м.о.

Если обе ф.р. A(t) и B(t) являются РП, то FQS адекватно отражает все три основные особенности фрактального трафика – его статистическое «самоподобие», наличие характерных взрывных пульсаций нагрузки и ДВЗ объемов поступлений.

Проблемы имитационного моделирования фрактальных очередей

Основным методом исследования FQS является ИМ. Имеющийся опыт [6–8] позволяет в числе первоочередных проблем моделирования FQS указать следующие три:

– проблему корректной реализации РТХ (в частности, РП) в ИМ,

– проблему длительных переходных процессов (ПП),

– проблему эффективного решения обратной задачи (задачи определения минимального *m*, обеспечивающего заданную малую вероятность отказа *P*).

¹ Работа выполнена при финансовой поддержке РФФИ (проект 12-07-00149-а).

Проблема корректной реализации РТХ

Формула для генерации с.в. $x \in Pa(K; \alpha)$, получаемая обращением ф.р. (1), имеет вид $x = K(1-z)^{-1/\alpha}$ или $x = Kz^{-1/\alpha}$, где z – базовая с.в. (БСВ), равномерно распределенная в промежутке от 0 до 1. Программные датчики БСВ реализуют ее *дискретную версию* \hat{z} с множеством равновероятных значений {0, ε , 2ε , ..., $1-\varepsilon$, 1} (возможно, без нуля и/или единицы), образующим решетку с шагом ε . В GPSS датчик Uniform(1,0,1) реализует дискретную с.в. (д.с.в.) \hat{z} с шагом $\varepsilon = 10^{-6}$. В других программах шаг ε составляет около 10^{-15} . При реализации РТХ шаг 10^{-15} (и, тем более, 10^{-6}) часто оказывается слишком большим и приводит к значительным отличиям свойств реализуемой д.с.в. $\hat{x} = K\hat{z}^{-1/\alpha}$ от свойств непрерывной с.в. (н.с.в.) $x \in Pa(K; \alpha)$. Поэтому при ИМ FQS имеет смысл говорить о реализации *дискретнюго* РП Pa($K; \alpha; \varepsilon$). В табл. 1 характеристики д.с.в. \hat{x} сравниваются при различных ε с соответствующими характеристиками н.с.в. x, приведенными в колонках « $\varepsilon \rightarrow 0$ » [6]. Из таблицы видно, что чем тяжелее хвост РП, тем сильнее отличается м.о. реализуемой д.с.в. $\hat{x} \in Pa(1; \alpha; \varepsilon)$ от м.о. н.с.в. $x \in Pa(K; \alpha)$. Очевидно, аналогичные особенности имеют место и при реализации в ИМ других РТХ.

Таблица 1 Сравнение числовых характеристик д.с.в. $\hat{x} \in Pa(1; \alpha; \varepsilon)$ и н.с.в. $x \in Pa(1; \alpha)$

	Математические ожидания				Коэффициенты вариации			
α	10 ⁻⁶	10⁻¹²	10 ⁻¹⁵	$\epsilon \rightarrow 0$	10 ⁻⁶	10^{-12}	10^{-15}	$\epsilon \rightarrow 0$
1,01	13,415	24,612	29,662	101	2652	$3,9.10^4$	9,8·10 ⁵	8
1,1	8,0297	10,154	10,549	11	48,3	$1,1.10^{4}$	$1,8.10^{5}$	8
1,5	2,9755	2,9998	3,0000	3	6,27	63,2	200,0	8
1,9	2,1089	2,1111	2,1111	2,1111	1,96	3,68	4,67	8
2	1,9985	1,9999985	2	2	1,61	2,46	2,79	8

В разных задачах отличие дискретного РП от непрерывного проявляется по-разному.

Например, в FQS M|Pa|1| ∞ при $x \in Pa(K; \alpha)$, $1 < \alpha \le 2$ стационарная средняя длина $L(\rho)$ очереди заявок бесконечна при любом коэффициенте загрузки $\rho > 0$:

$$L(\rho) = \frac{\lambda^2 x^{(2)}}{2(1-\rho)} = \frac{\rho^2 (1+C_x^2)}{2(1-\rho)} = \infty,$$
(2)

т.к. второй момент $x^{(2)}$ времени *x* и соответственно его коэффициент вариации C_x^2 бесконечны. Если эту FQS исследовать методом ИМ, то, поскольку вместо н.с.в. $x \in Pa(K; \alpha)$ реализуется д.с.в. \hat{x} , например, при $\varepsilon = 10^{-15}$, $\alpha = 2$ получится (искажаемое погрешностями и незавершенным ПП) приближение к иному результату:

$$L(\rho) = \frac{\rho^2 (1 + C_{\hat{x}}^2)}{2(1 - \rho)} \approx \frac{\rho^2 (1 + 2, 79^2)}{2(1 - \rho)} \approx \frac{4, 39\rho^2}{1 - \rho}, \qquad 0 < \rho < 1$$

(табл. 1), который принципиально отличается от истинного $L(\rho) = \infty$, $0 < \rho < 1$.

В другой FQS – в системе $Pa|M|1|\infty$ – дискретность цифровых датчиков с.в. влияет на результаты имитационного исследования зависимости $L(\rho)$ значительно меньше. В этой FQS среднюю длину $L(\rho)$ очереди можно рассчитать точно по формуле

$$L(\rho) = \frac{\rho\sigma}{1 - \sigma},\tag{3}$$

где σ – единственный в области $0 \le \sigma < 1$ корень уравнения $\sigma = A^*(\mu - \mu \sigma)$; $\mu = 1/\overline{x}$ – интенсивность обслуживания; $A^*(s) = M(e^{-s\tau}) = \int_0^\infty e^{-st} dA(t)$ – преобразование Лапласа от ф.р. A(t) интервала τ поступления заявок, в данном случае – от ф.р. Парето (1). С учетом (1) уравнение $\sigma = A^*(\mu - \mu \sigma)$ сводится к решаемому численно уравнению:

$$\sigma = \alpha K^{\alpha} \mu^{\alpha} (1 - \sigma)^{\alpha} \Gamma(-\alpha, K \mu (1 - \sigma)), \qquad (4)$$

где $\Gamma(c,x)$ – неполная гамма-функция: $\Gamma(c,x) = \int_x^{\infty} t^{c-1} e^{-t} dt$. При ИМ системы Pa|M|1| ∞ хотя и возникают заметные вычислительные и статистические погрешности, однако характер зависимости *L* от ρ принципиально не искажается. Так, при $\alpha = 1,1, K = 1$ (т.е. $\overline{\tau} = 11$) и $\rho = 0,1; 0,2; ...; 0,6; \mu = 1/(\rho\overline{\tau})$ решения уравнения (4) $\sigma \approx 0,259; 0,649; 0,872; 0,964;$ 0,993; 0,999 определяют соответствующие $L(\rho) \approx 0,035; 0,369; 2,04; 10,8; 69,1$ и 648 (точные значения округлены). В результате ИМ данной FQS (при $\varepsilon = 10^{-12}$ и длине прогона 10 млн. заявок) получены имитационные оценки $\hat{L}(\hat{\rho}) \approx 0,047; 0,51; 2,7; 14,4; 98$ и 859. При этом оценки коэффициента загрузки в отличие от заданных значений ρ составили $\hat{\rho} \approx 0,136; 0,275; 0,402; 0,532; 0,673$ и 0,831. Такие погрешности оценок могут быть в ряде задач вполне приемлемыми. Сложнее, однако, путем непосредственного ИМ установить, что в рассмотренной FQS, как следует из (4), при фиксированном μ и $\alpha \rightarrow 1$ (т.е. при $\rho \rightarrow 0$) имеет место $L(\rho) \rightarrow \infty$. Кстати, при ИМ м.о. д.с.в. $\hat{\tau} \in Pa(1; 1; \varepsilon)$ даже при $\varepsilon = 10^{-100}$ составит лишь 230,8357..., тогда как для н.с.в. $\tau \in Pa(1; 1)$ $\overline{\tau} = \infty$.

В общем случае для решения проблемы корректной реализации РТХ требуется использовать арифметику с произвольной разрядностью чисел. Для практических целей, по нашим оценкам, в большинстве случаев достаточно 60–100 десятичных значащих цифр. А при использовании машинной арифметики с обычной точностью, когда численные результаты моделирования FQS могут существенно зависеть от шага є дискретизации БСВ, следует этот шаг указывать вместе с результатами моделирования.

Проблема длительных переходных процессов

Бесконечная дисперсия РП и ДВЗ порождает в рассматриваемых FQS длительные ПП. Математическая структура оценок для средней длины L очереди и вероятности P отказа такова, что в среднем они сходятся к своим точным стационарным значениям как степенные функции моделируемого времени t. Учитывая этот факт, можно находить стационарные значения L и P, не дожидаясь завершения ПП. Проиллюстрируем эту идею двумя примерами.

Пример 1. Для системы Pa|M|1| ∞ (K = 1, $\alpha = 1,5$, $\rho = 0,7$, $\varepsilon = 10^{-12}$) на рис. 1 слева показан ПП $L_{cp}(t)$ с доверительными полосами, полученный на GPSS путем усреднения 10 000 независимых ПП $L_{f}(t)$ (т.е. изменений СЧА QAj во времени t).

В ходе ИМ вместе с оценками $L_{cp}(t)$ для $t = 300, 600, ..., 30\,000$ были рассчитаны оценки $\sigma(t)$ их средних квадратичных отклонений. Результаты ИМ перенесены в Ехсеl. По графику зависимости $L_{cp}(t)$ для L «визуально» определено и записано в отдельную ячейку начальное приближение. К графику зависимости от t разности $y = L - L_{cp}(t)$ (см. маркеры на рис. 1 справа) добавлена линия степенного тренда. Далее приближение для L уточнено подбором такого его значения, при котором достигается максимум коэффициента \mathbb{R}^2 детерминации тренда. Наилучший результат $\mathbb{R}^2 \approx 0,977$ получен при $L \approx 3,331$. Проверить точность этой оценки, можно расчетом для системы $Pa|M|1|\infty$ (K = 1, $\alpha = 1,5$, $\rho = 0,7$) точного решения по формулам (3), (4). Это решение $L \approx 3,3175$ отличается от найденной для L оценки лишь на 0,41%.

Секция 1

Рис. 1. Слева: аппроксимация для $L_{cp}(t)$ (центральная линия), доверительная полоса для $L_{cp}(t)$ (две линии рядом с центральной) и доверительная полоса для усредняемых оценок $L_j(t)$. Справа: график разности $y = L - L_{cp}(t)$ (маркеры) и линия ее степенного тренда (прямая)

Пример 2. На рис. 2 показан ПП оценки для *P* при ИМ системы Pa|Pa|1|100 при $\tau \in$ Pa(1; 1,1; ε), $x \in$ Pa(0,5; 1,1; ε). $\varepsilon = 10^{-12}$. Здесь $\overline{\tau} = 10,154$, $\overline{x} = 5,077$, $\rho = 0,5$. Слева – сам ПП, усредненный по 1000 независимых реплик, справа – график разности *P* – *P*(*t*) в логарифмических шкалах (кривая линия) и линия степенного тренда (прямая), в ходе построения которой найдена наилучшая оценка *P* = 0,229. Следовательно, усредненный ПП описывается как *P*(*t*) $\approx 0,229 - 0,647t^{-0,155}$. Из этого уравнения находим, что без аппроксимации, при длине всех 1000 прогонов 300 млн е.в. (т.е. при наблюдении около 10^{10} заявок), оценка *P*(*t*) в среднем составила бы 0,198 и примерно на 14% «не дошла» бы до стационарного *P* = 0,229.

Таким образом, метод степенной аппроксимации ПП позволяет существенно повысить точность и сократить время расчета стационарных характеристик FQS. Вместе с тем этот метод не освобождает от необходимости использования большого запаса качественных случайных чисел. К сожалению, в GPSS такой запас «не дотягивает» и до 1 млрд., т.е. на современных ПК может быть исчерпан за 3–5 минут. Это вместе с потребностью в «длинной» арифметике обусловливает актуальность создания для ИМ FQS специализированного программного обеспечения.

Решение обратной задачи

Для решения обратной задачи (определение m по заданной достаточно малой P) нужно преодолеть одновременно проблему оценки в ИМ малых вероятностей (при заданных m), и проблему перебора значений m для отыскания подходящих. Это удается за счет

степенной аппроксимации зависимости P(m) [8]. В принципе, достаточно решить задачу определения стационарной P при трех больших m, т.е. найти три точки $(m_1, P_1), (m_2, P_2), (m_3, P_3)$, отложить их на графике с логарифмическими шкалами, и провести через них прямую методом наименьших квадратов. Высокое значение \mathbb{R}^2 будет свидетельствовать о хорошей точности аппроксимации, низкое – о плохой.

Пример 3. Для системы Pa|Pa|1|*m* с параметрами $\tau \in$ Pa(1; 1,25; ε), $x \in$ Pa(1; 1,5; ε), $\varepsilon = 10^{-12}$, при m = 300, 400 и 500 методом степенной аппроксимации результатов ИМ (использовалось по 10 тысяч независимых реплик) найдены стационарные вероятности отказа P = 0,0124, 0,0102 и 0,00870. Соответствующие три точки (m_i, P_i) в логарифмических осях «идеально» ложатся на прямую. Полученная по ним степенная аппроксимация $P = 0,6467m^{-0,6930}$ с показателем $R^2 = 0,9998$ позволяет решить обратную задачу в общем виде: $m = (P/0,6467)^{-1/0,6930} = 0,53314 \cdot P^{-1,443}$. Используя это решение, находим, например, что для достижения вероятности $P = 10^{-6}$ нужен буфер, рассчитанный на хранение около 243 млн заявок. И это при загрузке $\rho = 0,6$ (!)

Решение прикладной задачи с применением предложенных методов

Для снижения вероятности отказа Р можно делать следующее:

- увеличивать размер буфера;
- повышать скорость обслуживания заявок;
- наращивать число каналов.

Применять в FQS буферы большого размера малоэффективно (в *примере 3* размер буфера растет как $(1/P)^{1,443}$ – быстрее, чем убывает *P*). Повышение скорости каналов – тоже. Так, если в FQS из *примера 3* положить, что $x \in Pa(0,1; 1,5; \varepsilon)$, т.е. ускорить обслуживание на порядок, то для обеспечения вероятности $P = 10^{-6}$ потребуется (при загрузке $\rho = 0,06$) буфер размером около **67 тыс. мест**. Однако (в отличие от классических СМО) неожиданно высокоэффективным путем становится наращивание числа каналов. Если, например, в этой же FQS вместо ускорения обслуживания увеличить число каналов (не на порядок, а лишь впятеро, то в полученной системе Pa|Pa|5|*m* уже при *m* = **25** вероятность отказа практически равна нулю: при прогоне 400 млн заявок не происходит ни одного отказа. Аналогичный эффект наблюдается и при других соотношениях параметра α в распределениях с.в. *x*, τ , а также в системах M|Pa|*n*|*m*.

Выводы

При моделировании фрактальных очередей устоявшиеся приемы ИМ систем с очередями приходится пересматривать и переоценивать заново. Проблемы возникают в связи с особенностями генерации с.в., описываемых РТХ (1), большой длительностью ПП (2) и оценками малых вероятностей P потерь при размере буфера $m < \infty$ (3). Корректное применение степенных аппроксимаций, основанных в случае проблемы (2) на асимптотическистепенном характере сходимости оценок, а в случае проблемы (3) – на асимптотическистепенном характере зависимости P(m), позволяет эти проблемы решать. При этом необходимо применять большое число независимых прогонов модели.

Проблема (1), требующая применения «длинной» арифметики и качественных датчиков с.в., а также задачи дальнейшего развития техники ИМ фрактальных очередей обусловливают актуальность создания специализированных программных средств ИМ.

Литература

1. **Stallings, William.** Интернет и телекоммуникации / W. Stallings. [Электронный ресурс]: URL: http://my.online.ru/it/press/cwm/1997/world.htm (Дата обращения: 13.03.2010).

2. Mark E. Crovella, Murad Taqqu and Azer Bestavros, «Heavy Tailed-Probability distributions in the World Wide Web» 5(6): 835–846, December 1997.

3. Шелухин, О.И. Фрактальные процессы в телекоммуникациях / О.И. Шелухин, А.М. Тенякшев, А.В. Осин: под ред. О.И. Шелухина. – М.: Радиотехника, 2003. – 480 с.

4. **Zwart, A. P.** (2001) Queueing Systems with Heavy Tails. *Eindhoven University of Technology*. – 227 Р. 5. **Мандельброт, Б.** Фрактальная геометрия природы / Б. Мандельброт. – М.: Институт компьютерных исследований, 2002. – 656 с.

6. Задорожный В.Н., Кутузов О.И. Проблемы генерации случайных величин с фрактальными распределениями / Омский научный вестник. – 2012. – № 3 (113). – С. 20–24.

7. Задорожный В.Н., Кутузов О.И. Методы моделирования очередей в условиях фрактального трафика в сетях с коммутацией пакетов: учеб. пособие. – Омск, ОмГТУ. – 2013. – 104 с.